33 research outputs found
Technologies for Non-Destructive Evaluation of Surfaces and Thin Coating
A study was made on two commercially available terbium-doped silicate glasses. There is an increased interest in silicate glasses doped with rare-earth ions for use in high-energy particle detection and radiographic applications. These glasses are of interest due to the fact that they can be formed into small fiber sensors; a property that can be used to increase the spatial resolution of a detection system. Following absorption of radiation, the terbium ions become excited and then emit photons via 4f-4f electronic transitions as they relax back to the ground state. The lifetime of these transitions is on the order of milliseconds. A longer decay component lasting on the order of minutes has also been observed. While radiative transitions in the 4f shell of rare-earth ions are generally well understood by the Judd-Olfelt theory, the presence of a longer luminescence decay component is not. Experimental evidence that the long decay component is due, in part, to the thermal release of trapped charge carriers will be presented. In addition, a theoretical model describing the time evolution of the radiation-induced luminescence will be presented
Putting Like a Pro: The Role of Positive Contagion in Golf Performance and Perception
Many amateur athletes believe that using a professional athlete's equipment can improve their performance. Such equipment can be said to be affected with positive contagion, which refers to the belief of transference of beneficial properties between animate persons/objects to previously neutral objects. In this experiment, positive contagion was induced by telling participants in one group that a putter previously belonged to a professional golfer. The effect of positive contagion was examined for perception and performance in a golf putting task. Individuals who believed they were using the professional golfer's putter perceived the size of the golf hole to be larger than golfers without such a belief and also had better performance, sinking more putts. These results provide empirical support for anecdotes, which allege that using objects with positive contagion can improve performance, and further suggest perception can be modulated by positive contagion
Juxtaposition of Chemical and Mutation-Induced Developmental Defects in Zebrafish Reveal a Copper-Chelating Activity for Kalihinol F
SummaryA major hurdle in using complex systems for drug screening is the difficulty of defining the mechanistic targets of small molecules. The zebrafish provides an excellent model system for juxtaposing developmental phenotypes with mechanism discovery using organism genetics. We carried out a phenotype-based screen of uncharacterized small molecules in zebrafish that produced a variety of chemically induced phenotypes with potential genetic parallels. Specifically, kalihinol F caused an undulated notochord, defects in pigment formation, hematopoiesis, and neural development. These phenotypes were strikingly similar to the zebrafish mutant, calamity, an established model of copper deficiency. Further studies into the mechanism of action of kalihinol F revealed a copper-chelating activity. Our data support this mechanism of action for kalihinol F and the utility of zebrafish as an effective system for identifying therapeutic and target pathways
Recommended from our members
Direct current sputtering of boron from boron/carbon mixtures
A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached and coating the substrate material with boron by sputtering from the boron-containing rod
Samples for 3rd Harmonic Magnetometry Assessment of NbTiN-Based SIS Structures
International audienceIn the quest for alternative superconducting materials to bring accelerator cavity performance beyond the bulk niobium (Nb) intrinsic limits, a promising concept uses superconductor-insulator-superconductor (SIS) thin film structures that allows magnetic flux shielding in accelerator cavities to higher fields [1]. Candidate materials for such structures are NbTiN as the superconductor and AlN as the insulator. We have demonstrated high quality NbTiN and AlN deposited by reactive DC magnetron sputtering (DCMS), both for individual layers and multilayers. Interface quality has been assessed for bilayer stacks with 250 nm NbTiN layers and AlN thicknesses from 30 nm down to1 nm. These SIS structures show continued sharp interfaces with total average roughness under 2 nm. The Hfp enhancement of the films will be examined with a 3rd harmonic magnetometry. The system is being designed and built in a continuing collaboration with CEA Saclay. It can measure 25 to 50 mm samples on a temperature controlled stage. This contribution presents an overview of the design of the 3rd harmonic magnetometer and the material properties assessment of standalone films and multilayer nanostructures
Dark-Sector Photo-Magnetic Luminescence: The Case for a Room Temperature Chameleon Search
We report the results of studies showing that temperature dependent photoluminescence is the likely source of unexpected large background rates in afterglow searches for dark sector phenomena, commonly called ``chameleons''. Using this information, we examine the possibility of a room temperature chameleon afterglow search that automatically eliminates this background. Then, without this background, we discuss a modest search effort exploring the afterglow halflife range equivalent to photon coupling constant range
Recommended from our members
Monocyte activation by interferon α is associated with failure to achieve a sustained virologic response after treatment for hepatitis C virus infection.
BackgroundInterferon α (IFN-α) and ribavirin can induce a sustained virologic response (SVR) in some but not all hepatitis C virus (HCV)-infected patients. The mechanism of effective treatment is unclear. One possibility is that IFN-α differentially improves the functional capacity of classic myeloid dendritic cells (mDCs) by altering expression of surface molecules or cytokines. Others have proposed that antigen-presenting cell activation could be paradoxically detrimental during HCV infection because of the production by monocytes of substances inhibitory or toxic to plasmacytoid dendritic cells.MethodsWe examined responses to in vitro IFN-α treatment of peripheral blood leukocyte samples from a retrospective treatment cohort of nearly 200 HCV-seropositive patients who had undergone antiviral therapy with ribavirin and pegylated IFN. We analyzed the variable responses of antigen-presenting cell subsets to drug.ResultsWe found that patients achieving SVR were no more likely to have robust mDC activation in response to IFN-α than those who did not achieve SVR. Rather, patients achieving SVR were distinguished by restrained monocyte activation in the presence of IFN-α, a factor that was second in importance only to IL28B genotype in its association with SVR.ConclusionsThese results suggest that interindividual variability in the response of monocytes to IFN-α is an important determinant of treatment success with IFN-α-based regimens