60 research outputs found

    Tracking Skin-Colored Objects in Real-Time

    Get PDF
    We present a methodology for tracking multiple skin-colored objects in a monocular image sequence. The proposed approach encompasses a collection of techniques that allow the modeling, detection and temporal association of skincolored objects across image sequences. A non-parametric model of skin color is employed. Skin-colored objects are detected with a Bayesian classifier that is bootstrapped with a small set of training data and refined through an off-line iterative training procedure. By using on-line adaptation of skin-color probabilities the classifier is able to cope with considerable illumination changes. Tracking over time is achieved by a novel technique that can handle multiple objects simultaneously. Tracked objects may move in complex trajectories, occlude each other in the field of view of a possibly moving camera and vary in number over time. A prototype implementation of the developed system operates on 320x240 live video in real time (28Hz), running on a conventional Pentium IV processor. Representative experimental results from the application of this prototype to image sequences are also presented. 1

    T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects

    Full text link
    We introduce T-LESS, a new public dataset for estimating the 6D pose, i.e. translation and rotation, of texture-less rigid objects. The dataset features thirty industry-relevant objects with no significant texture and no discriminative color or reflectance properties. The objects exhibit symmetries and mutual similarities in shape and/or size. Compared to other datasets, a unique property is that some of the objects are parts of others. The dataset includes training and test images that were captured with three synchronized sensors, specifically a structured-light and a time-of-flight RGB-D sensor and a high-resolution RGB camera. There are approximately 39K training and 10K test images from each sensor. Additionally, two types of 3D models are provided for each object, i.e. a manually created CAD model and a semi-automatically reconstructed one. Training images depict individual objects against a black background. Test images originate from twenty test scenes having varying complexity, which increases from simple scenes with several isolated objects to very challenging ones with multiple instances of several objects and with a high amount of clutter and occlusion. The images were captured from a systematically sampled view sphere around the object/scene, and are annotated with accurate ground truth 6D poses of all modeled objects. Initial evaluation results indicate that the state of the art in 6D object pose estimation has ample room for improvement, especially in difficult cases with significant occlusion. The T-LESS dataset is available online at cmp.felk.cvut.cz/t-less.Comment: WACV 201

    Camera Self-Calibration Using the Kruppa Equations and the SVD of the Fundamental Matrix: The Case of Varying Intrinsic Parameters

    Get PDF
    Estimation of the camera intrinsic calibration parameters is a prerequisite to a wide variety of vision tasks related to motion and stereo analysis. A major breakthrough related to the intrinsic calibration problem was the introduction in the early nineties of the autocalibration paradigm, according to which calibration is achieved not with the aid of a calibration pattern but by observing a number of image features in a set of successive images. Until recently, however, most research efforts have been focused on applying the autocalibration paradigm to estimating constant intrinsic calibration parameters. Therefore, such approaches are inapplicable to cases where the intrinsic parameters undergo continuous changes due to focusing and/or zooming. In this paper, our previous work for autocalibration in the case of constant camera intrinsic parameters is extended and a novel autocalibration method capable of handling variable intrinsic parameters is proposed. The method relies upon the Singular Value Decomposition of the fundamental matrix, which leads to a particularly simple form of the Kruppa equations. In contrast to the classical formulation that yields an over-determined system of constraints, a purely algebraic derivation is proposed here which provides a straightforward answer to the problem of determining which constraints to employ among the set of available ones. Additionally, the new formulation does not employ the epipoles, which are known to be difficult to estimate accurately. The intrinsic calibration parameters are recovered from the developed constraints through a nonlinear minimization scheme that explicitly takes into consideration the uncertainty associated with the estimates of the employed fundamental matrices. Detailed experimental results using both simulated and real image sequences demonstrate the feasibility of the approach

    Large-Scale, Metric Structure from Motion for Unordered Light Fields

    Get PDF
    This paper presents a large scale, metric Structure from Motion (SfM) pipeline for generalised cameras with overlapping fields-of-view, and demonstrates it using Light Field (LF) images. We build on recent developments in algorithms for absolute and relative pose recovery for generalised cameras and couple them with multi-view triangulation in a robust framework that advances the state-of-the-art on 3D reconstruction from LFs in several ways. First, our framework can recover the scale of a scene. Second, it is concerned with unordered sets of LF images, meticulously determining the order in which images should be considered. Third, it can scale to datasets with hundreds of LF images. Finally, it recovers 3D scene structure while abstaining from triangulating using very small baselines. Our approach outperforms the state-of-the-art, as demonstrated by real-world experiments with variable size datasets
    • …
    corecore