1,226 research outputs found
Magnetic Energy and Helicity Budgets in the Active-Region Solar Corona. I. Linear Force-Free Approximation
We self-consistently derive the magnetic energy and relative magnetic
helicity budgets of a three-dimensional linear force-free magnetic structure
rooted in a lower boundary plane. For the potential magnetic energy we derive a
general expression that gives results practically equivalent to those of the
magnetic Virial theorem. All magnetic energy and helicity budgets are
formulated in terms of surface integrals applied to the lower boundary, thus
avoiding computationally intensive three-dimensional magnetic field
extrapolations. We analytically and numerically connect our derivations with
classical expressions for the magnetic energy and helicity, thus presenting a
so-far lacking unified treatment of the energy/helicity budgets in the
constant-alpha approximation. Applying our derivations to photospheric vector
magnetograms of an eruptive and a noneruptive solar active regions, we find
that the most profound quantitative difference between these regions lies in
the estimated free magnetic energy and relative magnetic helicity budgets. If
this result is verified with a large number of active regions, it will advance
our understanding of solar eruptive phenomena. We also find that the
constant-alpha approximation gives rise to large uncertainties in the
calculation of the free magnetic energy and the relative magnetic helicity.
Therefore, care must be exercised when this approximation is applied to
photospheric magnetic field observations. Despite its shortcomings, the
constant-alpha approximation is adopted here because this study will form the
basis of a comprehensive nonlinear force-free description of the energetics and
helicity in the active-region solar corona, which is our ultimate objective.Comment: 44 pages, 8 figures, 2 tables. The Astrophysical Journal, in pres
The spherical collapse model in time varying vacuum cosmologies
We investigate the virialization of cosmic structures in the framework of
flat FLRW cosmological models, in which the vacuum energy density evolves with
time. In particular, our analysis focuses on the study of spherical matter
perturbations, as they decouple from the background expansion, "turn around"
and finally collapse. We generalize the spherical collapse model in the case
when the vacuum energy is a running function of the Hubble rate,
. A particularly well motivated model of this type is the
so-called quantum field vacuum, in which is a quadratic function,
, with . This model was previously studied
by our team using the latest high quality cosmological data to constrain its
free parameters, as well as the predicted cluster formation rate. It turns out
that the corresponding Hubble expansion history resembles that of the
traditional CDM cosmology. We use this CDM framework to
illustrate the fact that the properties of the spherical collapse model (virial
density, collapse factor, etc.) depend on the choice of the considered vacuum
energy (homogeneous or clustered). In particular, if the distribution of the
vacuum energy is clustered, then, under specific conditions, we can produce
more concentrated structures with respect to the homogeneous vacuum energy
case.Comment: 14 pages, 4 figures, minor changes, accepted for publication in Phys.
Rev.
Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media
To analyze seismic wave propagation in geological structures, it is possible
to consider various numerical approaches: the finite difference method, the
spectral element method, the boundary element method, the finite element
method, the finite volume method, etc. All these methods have various
advantages and drawbacks. The amplification of seismic waves in surface soil
layers is mainly due to the velocity contrast between these layers and,
possibly, to topographic effects around crests and hills. The influence of the
geometry of alluvial basins on the amplification process is also know to be
large. Nevertheless, strong heterogeneities and complex geometries are not easy
to take into account with all numerical methods. 2D/3D models are needed in
many situations and the efficiency/accuracy of the numerical methods in such
cases is in question. Furthermore, the radiation conditions at infinity are not
easy to handle with finite differences or finite/spectral elements whereas it
is explicitely accounted in the Boundary Element Method. Various absorbing
layer methods (e.g. F-PML, M-PML) were recently proposed to attenuate the
spurious wave reflections especially in some difficult cases such as shallow
numerical models or grazing incidences. Finally, strong earthquakes involve
nonlinear effects in surficial soil layers. To model strong ground motion, it
is thus necessary to consider the nonlinear dynamic behaviour of soils and
simultaneously investigate seismic wave propagation in complex 2D/3D geological
structures! Recent advances in numerical formulations and constitutive models
in such complex situations are presented and discussed in this paper. A crucial
issue is the availability of the field/laboratory data to feed and validate
such models.Comment: of International Journal Geomechanics (2010) 1-1
Survey of variation in human transcription factors reveals prevalent DNA binding changes
Published in final edited form as:
Science. 2016 Mar 25; 351(6280): 1450–1454.
Published online 2016 Mar 24. doi: 10.1126/science.aad2257Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA binding activity and used universal protein-binding microarrays to assay sequence-specific DNA binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA binding activities, which may contribute to phenotypic variation.National Institutes of Health; NHGRI R01 HG003985; P50 HG004233; A*STAR National Science Scholarship; National Science Foundatio
The diagnostic approach and management of hypertension in the emergency department
Hypertension urgency and emergency represents a challenging condition in which clinicians should determine the assessment and/or treatment of these patients. Whether the elevation of blood pressure (BP) levels is temporary, in need of treatment, or reflects a chronic hypertensive state is not always easy to unravel. Unfortunately, current guidelines provide few recommendations concerning the diagnostic approach and treatment of emergency department patients presenting with severe hypertension. Target organ damage determines: the timeframe in which BP should be lowered, target BP levels as well as the drug of choice to use. It's important to distinguish hypertensive emergency from hypertensive urgency, usually a benign condition that requires more likely an outpatient visit and treatment
Comprehensive analysis of the chromatin landscape in Drosophila melanogaster.
Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function
Hypertension and atrial fibrillation: diagnostic approach, prevention and treatment. Position paper of the Working Group 'Hypertension Arrhythmias and Thrombosis' of the European Society of Hypertension.
Hypertension is the most common cardiovascular disorder and atrial fibrillation is the most common clinically significant arrhythmia. Both these conditions frequently coexist and their prevalence increases rapidly with aging. There are different risk factors and clinical conditions predisposing to the development of atrial fibrillation, but due its high prevalence, hypertension is still the main risk factor for the development of atrial fibrillation. Several pathophysiologic mechanisms (such as structural changes, neurohormonal activation, fibrosis, atherosclerosis, etc.) have been advocated to explain the onset of atrial fibrillation. The presence of atrial fibrillation per se increases the risk of stroke but its coexistence with high blood pressure leads to an abrupt increase of cardiovascular complications. Different risk models are available for the risk stratification and the prevention of thromboembolism in patients with atrial fibrillation. In all of them hypertension is present and is an important risk factor. Antihypertensive treatment may contribute to reduce this risk, and it seems some classes are superior to others in the prevention of new-onset atrial fibrillation and prevention of stroke. Antithrombotic treatment with warfarin is effective in the prevention of thromboembolic events, although quite recently, new classes of anticoagulants that do not require international normalized ratio monitoring have been introduced with promising results
Prenatal Organochlorine Compound Exposure, Rapid Weight Gain, and Overweight in Infancy
Background: Although it has been hypothesized that fetal exposure to endocrine-disrupting chemicals may increase obesity risk, empirical data are limited, and it is uncertain how early in life any effects may begin. Objectives: We explored whether prenatal exposure to several organochlorine compounds (OCs) is associated with rapid growth in the first 6 months of life and body mass index (BMI) later in infancy. Methods: Data come from the INMA (Infancia y Medio-Ambiente) Child and Environment birth cohort in Spain, which recruited 657 women in early pregnancy. Rapid growth during the first 6 months was defined as a change in weight-for-age z-scores > 0.67, and elevated BMI at 14 months, as a z-score ≥ the 85th percentile. Generalized linear models were used to estimate the risk of rapid growth or elevated BMI associated with 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (DDE), hexachlorobenzene, β-hexachlorohexane, and polychlorinated biphenyls in first-trimester maternal serum. Results: After multivariable adjustment including other OCs, DDE exposure above the first quartile was associated with doubling of the risk of rapid growth among children of normal-weight (BMI < 25 kg/m2), but not overweight, mothers. DDE was also associated with elevated BMI at 14 months (relative risk per unit increase in log DDE = 1.50; 95% confidence interval, 1.11–2.03). Other OCs were not associated with rapid growth or elevated BMI after adjustment. Conclusions: In this study we found prenatal DDE exposure to be associated with rapid weight gain in the first 6 months and elevated BMI later in infancy, among infants of normal-weight mothers. More research exploring the potential role of chemical exposures in early-onset obesity is needed.This work was supported by grants from the Spanish Ministry of Health (FIS-PI041436), Instituto de Salud Carlos III (Red INMA G03/176 and CB06/02/0041), the Generalitat de Catalunya-CIRIT (Consejo Interdepartamental de Investigación e Innovación Tecnológica) (1999SGR 00241), and the Fundació Roger Torne
- …