151 research outputs found
Pattern Formation in a 2D Elastic Solid
We present a dynamical theory of a two-dimensional martensitic transition in
an elastic solid, connecting a high-temperature phase which is nondegenerate
and has triangular symmetry, and a low-temperature phase which is triply
degenerate and has oblique symmetry. A global mode-based Galerkin method is
employed to integrate the deterministic equation of motion, the latter of which
is derived by the variational principle from a nonlinear, nonlocal
Ginzburg-Landau theory which includes the sound-wave viscosity. Our results
display (i) the phenomenon of surface nucleation, and (ii) the dynamical
selection of a length scale of the resultant patterns.Comment: LaTeX, 14 pages with four post-script figures included by psfig.
Three of these are colour, but viewable in black-and-white. Presented at the
conference "Collective Phenomena in Physics: Pattern Formation in Fluids and
Materials", University of Western Ontario, London, June 199
Solid-state NMR spectroscopy of 10% 13C labeled ubiquitin: spectral simplification and stereospecific assignment of isopropyl groups
We describe the simplification of 13C-13C correlation spectra obtained from a microcrystalline protein sample expressed on a growth medium of 10% fully 13C labeled glucose diluted in 90% natural abundance glucose as compared to a fully labeled sample. Such a labeling scheme facilitates the backbone and side-chain resonance assignment of Phe, Tyr, His, Asp, Asn, Ile, Lys and Pro and yields an unambiguous stereospecific assignment of the valine Cγ1, Cγ2 13C resonances and of Leucine Cδ
Statics and dynamics of domain patterns in hexagonal-orthorhombic ferroelastics
We study the statics and the dynamics of domain patterns in proper
hexagonal-orthorhombic ferroelastics; these patterns are of particular interest
because they provide a rare physical realization of disclinations in crystals.
Both our static and dynamical theories are based entirely on classical,
nonlinear elasticity theory; we use the minimal theory consistent with
stability, symmetry and ability to explain qualitatively the observed patterns.
After scaling, the only parameters of the static theory are a temperature
variable and a stiffness variable. For moderate to large stiffness, our static
results show nested stars, unnested stars, fans and other nodes, triangular and
trapezoidal regions of trapped hexagonal phase, etc observed in electron
microscopy of Ta4N and Mg-Cd alloys, and also in lead orthovanadate (which is
trigonal-monoclinic); we even find imperfections in some nodes, like those
observed. For small stiffness, we find patterns like those observed in the
mineral Mg-cordierite. Our dynamical studies of growth and relaxation show the
formation of these static patterns, and also transitory structures such as
12-armed bursts, streamers and striations which are also seen experimentally.
The major aspects of the growth-relaxation process are quite unlike those in
systems with conventional order parameters, for it is inherently nonlocal; for
example, the changes from one snapshot to the next are not predictable by
inspection.Comment: 9 pages, 3 figures (1 b&w, 2 colour); animations may be viewed at
http://huron.physics.utoronto.ca/~curnoe/sim.htm
Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2
Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed
matter physics counterpart of relativisticWeyl fermion [13] originally
introduced in high energy physics. The Weyl semimetal realized in the TaAs
class features multiple Fermi arcs arising from topological surface states [10,
11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced
negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20].
Recently it was proposed theoretically that a new type (type-II) of Weyl
fermion [21], which does not have counterpart in high energy physics due to the
breaking of Lorentz invariance, can emerge as topologically-protected touching
between electron and hole pockets. Here, we report direct spectroscopic
evidence of topological Fermi arcs in the predicted type-II Weyl semimetal
MoTe2 [22-24]. The topological surface states are confirmed by directly
observing the surface states using bulk-and surface-sensitive angle-resolved
photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI)
pattern between the two putative Fermi arcs in scanning tunneling microscopy
(STM). Our work establishes MoTe2 as the first experimental realization of
type-II Weyl semimetal, and opens up new opportunities for probing novel
phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.Comment: submitted on 01/29/2016. Nature Physics, in press. Spectroscopic
evidence of the Fermi arcs from two complementary surface sensitive probes -
ARPES and STS. A comparison of the calculated band structure for T_d and 1T'
phase to identify the topological Fermi arcs in the T_d phase is also
included in the supplementary informatio
Fractional deuteration applied to biomolecular solid-state NMR spectroscopy
Solid-state Nuclear Magnetic Resonance can provide detailed insight into structural and dynamical aspects of complex biomolecules. With increasing molecular size, advanced approaches for spectral simplification and the detection of medium to long-range contacts become of critical relevance. We have analyzed the protonation pattern of a membrane-embedded ion channel that was obtained from bacterial expression using protonated precursors and D2O medium. We find an overall reduction of 50% in protein protonation. High levels of deuteration at Hα and Hβ positions reduce spectral congestion in (1H,13C,15N) correlation experiments and generate a transfer profile in longitudinal mixing schemes that can be tuned to specific resonance frequencies. At the same time, residual protons are predominantly found at amino-acid side-chain positions enhancing the prospects for obtaining side-chain resonance assignments and for detecting medium to long-range contacts. Fractional deuteration thus provides a powerful means to aid the structural analysis of complex biomolecules by solid-state NMR
Structural and vibrational study of pseudocubic CdIn2Se4 under compression
This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher.
To access the final edited and published work see http://dx.doi.org/10.1021/jp5077565We report a comprehensive experimental and theoretical study of the structural and vibrational properties of a-CdIn2Se4 under compression. Angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy evidence that this ordered-vacancy compound with pseudocubic structure undergoes a phase transition (7 GPa) toward a disordered rocksalt structure as observed in many other ordered-vacancy compounds. The equation of state and the pressure dependence of the Raman-active modes of this semiconductor have been determined and compared both to ab initio total energy and lattice dynamics calculations and to related compounds. Interestingly, on decreasing pressure, at similar to 2 GPa, CdIn2Se4 transforms into a spinel structure which, according to calculations, is energetically competitive with the initial pseudocubic phase. The phase behavior of this compound under compression and the structural and compressibility trends in AB(2)Se(4) selenides are discussed.This study was supported by the Spanish government MEC under Grant Nos: MAT2013-46649-C4-3-P, MAT2013-46649-C4-2-P, MAT2010-21270-C04-03/04, and CTQ2009-14596-C02-01, by MALTA Consolider Ingenio 2010 Project (CSD2007-00045) and by Generalitat Valenciana (GVA-ACOMP-2013-1012). A.M. and P.R-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster, and also to S. Munoz-Rodriguez for providing a data-parsing application. J.A.S. acknowledges Juan de la Cierva fellowship program for financial support.Santamaría Pérez, D.; Gomis, O.; Pereira, ALJ.; Vilaplana Cerda, RI.; Popescu, C.; Sans Tresserras, JÁ.; Manjón Herrera, FJ.... (2014). Structural and vibrational study of pseudocubic CdIn2Se4 under compression. Journal of Physical Chemistry C. 118(46):26987-26999. https://doi.org/10.1021/jp5077565S26987269991184
BiVO4 based high k microwave dielectric materials: a review
The BiVO4material has attracted much attention in recent years due to its active photocatalytic properties under visible light, bright yellow color as a nontoxic pigment, and its high relative permittivity (ϵr) and Qf (quality factor, Q × resonant frequency, f) as a potential microwave dielectric ceramic. In this review, we introduce the origin, synthesis, crystal structure and phase transitions of the four polymorphic phases of BiVO4: orthorhombic (pucherite), zircon (dreyerite), scheelite monoclinic (clinobisvanite) and scheelite tetragonal. We then precis recent studies on doped BiVO4ceramics in terms of A site, B site and A/B site complex substitutions. Low sintering temperature (<800 °C) and high ϵrvalues could be obtained in some solid solution ceramics and near zero temperature coefficient of resonant frequency (TCF/τf) values could be achieved in layered or granulated particle composite ceramics. Besides, a series of temperature stable high ϵrmicrowave dielectric ceramics can also be obtained for many co-fired composite ceramics, such as BiVO4-TiO2, and BiVO4-TiO2-Bi2Ti4O11. The high ϵr, high Qf value, low sintering temperature and chemical compatibility with some base metals suggest that BiVO4-based materials are strong candidates for both LTCC and other microwave device applications in current 4G and future 5G technologies
- …