5 research outputs found

    Radio-Loud Exoplanet-Exomoon Survey (RLEES): GMRT Search for Electron Cyclotron Maser Emission

    Get PDF
    We conducted the first dedicated search for signatures of exoplanet-exomoon interactions using the Giant Metrewave Radio Telescope (GMRT) as part of the radio-loud exoplanet-exomoon survey (RLEES). Due to stellar tidal heating, irradiation, and subsequent atmospheric escape, candidate `exo-Io' systems are expected to emit up to 10610^6 times more plasma flux than the Jupiter-Io DC circuit. This can induce detectable radio emission from the exoplanet-exomoon system. We analyze three `exo-Io' candidate stars: WASP-49, HAT-P 12, and HD 189733. We perform 12-hour phase-curve observations of WASP-49b at 400 MHz during primary &\& secondary transit, as well as first &\& third quadratures achieving a 3σ\sigma upper-limit of 0.18 mJy/beam averaged over four days. HAT-P~12 was observed with GMRT at 150 and 325 MHz. We further analyzed the archival data of HD 189733 at 325 MHz. No emission was detected from the three systems. However, we place strong upper limits on radio flux density. Given that most exo-Io candidates orbit hot Saturns, we encourage more multiwavelength searches (in particular low frequencies) to span the lower range of exoplanet B-field strengths constrained here.Comment: 7 pages, 3 figures, accepted for publication in The Astronomical Journa

    Optical spectroscopy of Gaia detected protostars with DOT: can we probe protostellar photospheres?

    Full text link
    Optical spectroscopy offers the most direct view of the stellar properties and the accretion indicators. Standard accretion tracers, such as HβH\beta, HαH\alpha, and, Ca II triplet lines, and most photospheric features, fall in the optical wavelengths. However, these tracers are not readily observable from deeply embedded protostars because of the large line of sight extinction (Av ∼\sim 50-100 mag) toward them. In some cases, however, it is possible to observe protostars at optical wavelengths if the outflow cavity is aligned along the line-of-sight that allows observations of the photosphere, or the envelope is very tenuous and thin such that the extinction is low. In such cases, we can not only detect these protostars at optical wavelengths but also follow up spectroscopically. We have used the HOPS catalog (Furlan et al. 2016) of protostars in Orion to search for optical counterparts for protostars in the Gaia DR3 survey. Out of the 330 protostars in the HOPS sample, an optical counterpart within 2" is detected for 62 of the protostars. For 17 out of 62 optically detected protostars, we obtained optical spectra { (between 5500 to 8900 A˚\AA) using the Aries-Devasthal Faint Object Spectrograph \& Camera (ADFOSC) on the 3.6-m Devasthal Optical Telescope (DOT) and Hanle Faint Object Spectrograph Camera (HFOSC) on 2-m Himalayan Chandra Telescope (HCT)}. We detect strong photospheric features, such as the TiO bands in the spectra {(of 4 protostars)}, hinting that photospheres can form early on in the star formation process. We further determined the spectral types of protostars, which show photospheres similar to a late M-type. Mass accretion rates derived for the protostars are similar to those found for T-Tauri stars, in the range of 10−7^{-7} to 10−8^{-8} M⊙M_\odot/yr.Comment: 9 pages, 5 figures accepted in Journal of Astrophysics and Astronomy as part of the "Star formation studies in the context of NIR instruments on 3.6m DOT" special issu

    Identifying the population of T-Tauri stars in Taurus: UV-optical synergy

    Full text link
    With the third data release of the Gaia mission GaiaGaia DR3 with its precise photometry and astrometry, it is now possible to study the behaviour of stars at a scale never seen before. In this paper, we developed new criteria to identify T-Tauri stars (TTS) candidates using UV and optical CMDs by combining the GALEX and Gaia surveys. We found 19 TTS candidates and 5 of them are newly identified TTS in the Taurus Molecular Cloud (TMC), not catalogued before as TMC members. For some of the TTS candidates, we also obtained optical spectra from several Indian telescopes. We also present the analysis of the distance and proper motion of young stars in the Taurus using data from GaiaGaia DR3. We found that the stars in Taurus show a bimodal distribution with distance, having peaks at 130.17−1.241.31130.17_{-1.24}^{1.31} pc and 156.25−5.001.86156.25_{-5.00}^{1.86} pc. The reason for this bimodality, we think, is due to the fact that different clouds in the TMC region are at different distances. We further show that the two populations have similar ages and proper motion distribution. Using the GaiaGaia DR3 colour-magnitude diagram, we show that the age of Taurus is consistent with 1 Myr.Comment: 13 pages, 10 figure

    The key science drivers for MICHI: a thermal-infrared instrument for the TMT

    No full text
    With the imminent launch of the JWST, the field of thermal-infrared (TIR) astronomy will enjoy a revolution. It is easy to imagine that all areas of infrared (IR) astronomy will be greatly advanced, but perhaps impossible to conceive of the new vistas that will be opened. To allow both follow-up JWST observations and a continuance of work started on the ground-based 8m's, we continue to plan the science cases and instrument design for a TIR imager and spectrometer for early operation on the TMT. We present the current status of our science cases and the instrumentation plans, harnessing expertise across the TMT partnership. This instrument will be proposed by the MICHI team as a second-generation instrument in any upcoming calls for proposals
    corecore