16 research outputs found

    Imaging elastodynamic and hydraulic properties of in situ fractured rock. An experimental investigation exploring effects of dynamic stressing and shearing

    Get PDF
    We describe laboratory experiments to elucidate the relationship between nonlinear elasticity and permeability evolution in fractured media subjected to local stress perturbations. This study is part of an effort to measure fluid pathways and fracture properties using active-source acoustic monitoring during fluid injection and shear of rough fractures. Experiments were conducted with L-shaped samples of Westerly granite fractured in situ under triaxial conditions with deionized water subsequently circulated through the resulting fractures. After in situ fracturing, we separately imposed oscillations of the applied normal stress and pore pressure with amplitudes ranging from 0.2 to 1 MPa and frequencies from 0.1 to 40 Hz. In response to normal stress and pore pressure oscillations, fractured Westerly granite samples exhibit characteristic transient softening, acoustic velocity fluctuations, and slow recovery, together with permeability enhancement or decay, informing us about the coupled nonlinear elastodynamic and poromechanical rock properties. Fracture interface properties (contact asperity stiffness, aperture) are then altered in situ by shearing, which generally decreases the measured elastic nonlinearity and permeability change for both normal stress and pore pressure oscillations

    Experimental investigation of elastodynamic nonlinear response of dry intact, fractured and saturated rock

    No full text
    Nonlinear elastodynamic response of fractured rocks carries crucial information on fracture features that can be exploited to forecast flow properties, friction constitutive behavior and poromechanical response. Well-controlled laboratory experiments are designed to measure the nonlinear elastodynamic response of Westerly granite in three states: dry intact, dry fractured and saturated fractured. We study the effect of fracturing and saturation in modifying the elastodynamic response of the rock. Each sample is tested at a normal stress level of 15 MPa. We measure the elastodynamic response of an intact L-shaped sample of Westerly Granite subjected to normal stress oscillations of prescribed amplitudes (0.2–1 MPa) and frequencies (0.1, 1, 10 Hz). Ultrasonic waves transmitted across the sample are used to monitor the evolution of wave velocity before, during and after dynamic stressing. The nonlinearity of the elastodynamic response is measured in terms of: (1) the offset in normalized wave velocity; (2) the amplitude of wave velocity fluctuation during the oscillations; and (3) recovery rate of the wave velocity post-oscillation. We observe that the three nonlinearity parameters show a similar trend. Irrespective of the parameter, the nonlinearity measures higher for sample in dry-intact condition than that for dry-fractured and the saturated-fractured sample exhibits smaller nonlinearity than the dry-fractured sample. As expected, the saturated sample exhibits less nonlinearity than the dry intact and fractured samples due to the presence of interstitial fluid and the resulting increased interface stiffness. Conversely, the dry intact rock shows a higher nonlinearity than the dry fractured. We use numerical simulations to show that the presence of fracture significantly alters the strain distribution across the bulk of the sample and only the contacting asperities are highly strained, thus resulting in a decrease in the measured elastodynamic nonlinearity
    corecore