148 research outputs found
Sigma frequency dependent motor learning in Williams syndrome
Abstract There are two basic stages of fine motor learning: performance gain might occur during practice (online learning), and improvement might take place without any further practice (offline learning). Offline learning, also called consolidation, has a sleep-dependent stage in terms of both speed and accuracy of the learned movement. Sleep spindle or sigma band characteristics affect motor learning in typically developing individuals. Here we ask whether the earlier found, altered sigma activity in a neurodevelopmental disorder (Williams syndrome, WS) predicts motor learning. TD and WS participants practiced in a sequential finger tapping (FT) task for two days. Although WS participants started out at a lower performance level, TD and WS participants had a comparable amount of online and offline learning in terms of the accuracy of movement. Spectral analysis of WS sleep EEG recordings revealed that motor accuracy improvement is intricately related to WS-specific NREM sleep EEG features in the 8–16 Hz range profiles: higher 11–13.5 Hz z-transformed power is associated with higher offline FT accuracy improvement; and higher oscillatory peak frequencies are associated with lower offline accuracy improvements. These findings indicate a fundamental relationship between sleep spindle (or sigma band) activity and motor learning in WS
An Event-Related fMRI Study of Phonological Verbal Working Memory in Schizophrenia
Background: While much is known about the role of prefrontal cortex (PFC) in working memory (WM) deficits of schizophrenia, the nature of the relationship between cognitive components of WM and brain activation patterns remains unclear. We aimed to elucidate the neural correlates of the maintenance component of verbal WM by examining correct and error trials with event-related fMRI. Methodology/Findings: Twelve schizophrenia patients (SZ) and thirteen healthy control participants (CO) performed a phonological delayed-matching-to-sample-task in which a memory set of three nonsense words was presented, followed by a 6-seconds delay after which a probe nonsense word appeared. Participants decided whether the probe matched one of the targets, and rated the confidence of their decision. Blood-oxygen-level-dependent (BOLD) activity during WM maintenance was analyzed in relation to performance (correct/error) and confidence ratings. Frontal and parietal regions exhibited increased activation on correct trials for both groups. Correct and error trials were further segregated into true memory, false memory, guess, and true error trials. True memory trials were associated with increased bilateral activation of frontal and parietal regions in both groups but only CO showed deactivation in PFC. There was very little maintenancerelated cortical activity during guess trials. False memory was associated with increased left frontal and parietal activation in both groups. Conclusion: These findings suggest that a wider network of frontal and parietal regions support WM maintenance in correct trials compared with error trials in both groups. Furthermore, a more extensive and dynamic pattern of recruitment of the frontal and parietal networks for true memory was observed in healthy controls compared with schizophrenia patients. These results underscore the value of parsing the sources of memory errors in fMRI studies because of the non-linear nature of the brain-behavior relationship, and suggest that group comparisons need to be interpreted in more specific behavioral contexts
Practice Induces Function-Specific Changes in Brain Activity
Practice can have a profound effect on performance and brain activity, especially if a task can be automated. Tasks that allow for automatization typically involve repeated encoding of information that is paired with a constant response. Much remains unknown about the effects of practice on encoding and response selection in an automated task.To investigate function-specific effects of automatization we employed a variant of a Sternberg task with optimized separation of activity associated with encoding and response selection by means of m-sequences. This optimized randomized event-related design allows for model free measurement of BOLD signals over the course of practice. Brain activity was measured at six consecutive runs of practice and compared to brain activity in a novel task.Prompt reductions were found in the entire cortical network involved in encoding after a single run of practice. Changes in the network associated with response selection were less robust and were present only after the third run of practice.This study shows that automatization causes heterogeneous decreases in brain activity across functional regions that do not strictly track performance improvement. This suggests that cognitive performance is supported by a dynamic allocation of multiple resources in a distributed network. Our findings may bear importance in understanding the role of automatization in complex cognitive performance, as increased encoding efficiency in early stages of practice possibly increases the capacity to otherwise interfering information
Altered Small-World Brain Networks in Schizophrenia Patients during Working Memory Performance
Impairment of working memory (WM) performance in schizophrenia patients (SZ) is well-established. Compared to healthy controls (HC), SZ patients show aberrant blood oxygen level dependent (BOLD) activations and disrupted functional connectivity during WM performance. In this study, we examined the small-world network metrics computed from functional magnetic resonance imaging (fMRI) data collected as 35 HC and 35 SZ performed a Sternberg Item Recognition Paradigm (SIRP) at three WM load levels. Functional connectivity networks were built by calculating the partial correlation on preprocessed time courses of BOLD signal between task-related brain regions of interest (ROIs) defined by group independent component analysis (ICA). The networks were then thresholded within the small-world regime, resulting in undirected binarized small-world networks at different working memory loads. Our results showed: 1) at the medium WM load level, the networks in SZ showed a lower clustering coefficient and less local efficiency compared with HC; 2) in SZ, most network measures altered significantly as the WM load level increased from low to medium and from medium to high, while the network metrics were relatively stable in HC at different WM loads; and 3) the altered structure at medium WM load in SZ was related to their performance during the task, with longer reaction time related to lower clustering coefficient and lower local efficiency. These findings suggest brain connectivity in patients with SZ was more diffuse and less strongly linked locally in functional network at intermediate level of WM when compared to HC. SZ show distinctly inefficient and variable network structures in response to WM load increase, comparing to stable highly clustered network topologies in HC
Model-based parametric study of frontostriatal abnormalities in schizophrenia patients
<p>Abstract</p> <p>Background</p> <p>Several studies have suggested that the activity of the prefrontal cortex (PFC) and the dopamine (DA) release in the striatum has an inverse relationship. One would attribute this relationship primarily to the circuitry comprised of the glutamatergic projection from the PFC to the striatum and the GABAergic projection from the striatum to the midbrain DA nucleus. However, this circuitry has not characterized satisfactorily yet, so that no quantitative analysis has ever been made on the activities of the PFC and the striatum and also the DA release in the striatum.</p> <p>Methods</p> <p>In this study, a system dynamics model of the corticostriatal system with dopaminergic innervations is constructed to describe the relationships between the activities of the PFC and the striatum and the DA release in the striatum. By taking published receptor imaging data from schizophrenia patients and healthy subjects into this model, this article analyzes the effects of striatal D2 receptor activation on the balance of the activity and neurotransmission in the frontostriatal system of schizophrenic patients in comparison with healthy controls.</p> <p>Results</p> <p>The model predicts that the suppressive effect by D2 receptors at the terminals of the glutamatergic afferents to the striatum from the PFC enhances the hypofrontality-induced elevation of striatal DA release by at most 83%. The occupancy-based estimation of the 'optimum' D2 receptor occupancy by antipsychotic drugs is 52%. This study further predicts that patients with lower PFC activity tend to have greater improvement of positive symptoms following antipsychotic medication.</p> <p>Conclusion</p> <p>This model-based parametric study would be useful for system-level analysis of the brains with psychiatric diseases. It will be able to make reliable prediction of clinical outcome when sufficient data will be available.</p
Origins of Spatial Working Memory Deficits in Schizophrenia: An Event-Related fMRI and Near-Infrared Spectroscopy Study
Abnormal prefrontal functioning plays a central role in the working memory (WM) deficits of schizophrenic patients, but the nature of the relationship between WM and prefrontal activation remains undetermined. Using two functional neuroimaging methods, we investigated the neural correlates of remembering and forgetting in schizophrenic and healthy participants. We focused on the brain activation during WM maintenance phase with event-related functional magnetic resonance imaging (fMRI). We also examined oxygenated hemoglobin changes in relation to memory performance with the near-infrared spectroscopy (NIRS) using the same spatial WM task. Distinct types of correct and error trials were segregated for analysis. fMRI data indicated that prefrontal activation was increased during WM maintenance on correct trials in both schizophrenic and healthy subjects. However, a significant difference was observed in the functional asymmetry of frontal activation pattern. Healthy subjects showed increased activation in the right frontal, temporal and cingulate regions. Schizophrenic patients showed greater activation compared with control subjects in left frontal, temporal and parietal regions as well as in right frontal regions. We also observed increased ‘false memory’ errors in schizophrenic patients, associated with increased prefrontal activation and resembling the activation pattern observed on the correct trials. NIRS data replicated the fMRI results. Thus, increased frontal activity was correlated with the accuracy of WM in both healthy control and schizophrenic participants. The major difference between the two groups concerned functional asymmetry; healthy subjects recruited right frontal regions during spatial WM maintenance whereas schizophrenic subjects recruited a wider network in both hemispheres to achieve the same level of memory performance. Increased “false memory” errors and accompanying bilateral prefrontal activation in schizophrenia suggest that the etiology of memory errors must be considered when comparing group performances. Finally, the concordance of fMRI and NIRS data supports NIRS as an alternative functional neuroimaging method for psychiatric research
Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology
Reduced P300 amplitude during retrieval on a spatial working memory task in a community sample of adolescents who report psychotic symptoms.
BACKGROUND: Deficits in working memory are widely reported in schizophrenia and are considered a trait marker for the disorder. Event-related potentials (ERPs) and imaging data suggest that these differences in working memory performance may be due to aberrant functioning in the prefrontal and parietal cortices. Research suggests that many of the same risk factors for schizophrenia are shared with individuals from the general population who report psychotic symptoms. METHODS: Forty-two participants (age range 11--13 years) were divided into those who reported psychotic symptoms (N = 17) and those who reported no psychotic symptoms, i.e. the control group (N = 25). Behavioural differences in accuracy and reaction time were explored between the groups as well as electrophysiological correlates of working memory using a Spatial Working Memory Task, which was a variant of the Sternberg paradigm. Specifically, differences in the P300 component were explored across load level (low load and high load), location (positive probe i.e. in the same location as shown in the study stimulus and negative probe i.e. in a different location to the study stimulus) and between groups for the overall P300 timeframe. The effect of load was also explored at early and late timeframes of the P300 component (250-430 ms and 430-750 ms respectively). RESULTS: No between-group differences in the behavioural data were observed. Reduced amplitude of the P300 component was observed in the psychotic symptoms group relative to the control group at posterior electrode sites. Amplitude of the P300 component was reduced at high load for the late P300 timeframe at electrode sites Pz and POz. CONCLUSIONS: These results identify neural correlates of neurocognitive dysfunction associated with population level psychotic symptoms and provide insights into ERP abnormalities associated with the extended psychosis phenotype
Dysfunctional GABAergic inhibition in the prefrontal cortex leading to "psychotic" hyperactivation
<p>Abstract</p> <p>Background</p> <p>The GABAergic system in the brain seems to be dysfunctional in various psychiatric disorders. Many studies have suggested so far that, in schizophrenia patients, GABAergic inhibition is selectively but consistently reduced in the prefrontal cortex (PFC).</p> <p>Results</p> <p>This study used a computational model of the PFC to investigate the dynamics of the PFC circuit with and without chandelier cells and other GABAergic interneurons. The inhibition by GABAergic interneurons other than chandelier cells effectively regulated the PFC activity with rather low or modest levels of dopaminergic neurotransmission. This activity of the PFC is associated with normal cognitive functions and has an inverted-U shaped profile of dopaminergic modulation. In contrast, the chandelier cell-type inhibition affected only the PFC circuit dynamics in hyperdopaminergic conditions. Reduction of chandelier cell-type inhibition resulted in bistable dynamics of the PFC circuit, in which the upper stable state is associated with a hyperactive mode. When both types of inhibition were reduced, this hyperactive mode and the conventional inverted-U mode merged.</p> <p>Conclusion</p> <p>The results of our simulation suggest that, in schizophrenia, a reduction of GABAergic inhibition increases vulnerability to psychosis by (i) producing the hyperactive mode of the PFC with hyperdopaminergic neurotransmission by dysfunctional chandelier cells and (ii) increasing the probability of the transition to the hyperactive mode from the conventional inverted-U mode by dysfunctional GABAergic interneurons.</p
An investigation into aripiprazole's partial D(2) agonist effects within the dorsolateral prefrontal cortex during working memory in healthy volunteers
Rationale:
Working memory impairments in schizophrenia have been attributed to dysfunction of the dorsolateral prefrontal cortex (DLPFC) which in turn may be due to low DLPFC dopamine innervation. Conventional antipsychotic drugs block DLPFC D2 receptors, and this may lead to further dysfunction and working memory impairments. Aripiprazole is a D2 receptor partial agonist hypothesised to enhance PFC dopamine functioning, possibly improving working memory.
Objectives:
We probed the implications of the partial D2 receptor agonist actions of aripiprazole within the DLPFC during working memory. Investigations were carried out in healthy volunteers to eliminate confounds of illness or medication status. Aripiprazole’s prefrontal actions were compared with the D2/5-HT2A blocker risperidone to separate aripiprazole’s unique prefrontal D2 agonist actions from its serotinergic and striatal D2 actions that it shares with risperidone.
Method:
A double-blind, placebo-controlled, parallel design was implemented. Participants received a single dose of either 5 mg aripiprazole, 1 mg risperidone or placebo before performing the n-back task whilst undergoing fMRI scanning.
Results:
Compared with placebo, the aripiprazole group demonstrated enhanced DLPFC activation associated with a trend for improved discriminability (d’) and speeded reaction times. In contrast to aripiprazole’s neural effects, the risperidone group demonstrated a trend for reduced DLPFC recruitment. Unexpectedly, the risperidone group demonstrated similar effects to aripiprazole on d’ and additionally had reduced errors of commission compared with placebo.
Conclusion:
Aripiprazole has unique DLPFC actions attributed to its prefrontal D2 agonist action. Risperidone’s serotinergic action that results in prefrontal dopamine release may have protected against any impairing effects of its prefrontal D2 blockade
- …