13,115 research outputs found

    Thermal shock and erosion resistant tantalum carbide ceramic material

    Get PDF
    Ceramic tantalum carbide artifacts with high thermal shock and mechanical erosion resistance are provided by incorporating tungsten-rhenium and carbon particles in a tantalum carbide matrix. The mix is sintered by hot pressing to form the ceramic article which has a high fracture strength relative to its elastic modulus and thus has an improved thermal shock and mechanical erosion resistance. The tantalum carbide is preferable less than minus 100 mesh, the carbon particles are preferable less than minus 100 mesh, and the tungsten-rhenium particles are preferable elongate, having a length to thickness ratio of at least 2/1. Tungsten-rhenium wire pieces are suitable as well as graphite particles

    Thoriated nickel bonded by solid-state diffusion method

    Get PDF
    Solid-state diffusion bonding in an inert-gas atmosphere forms high-strength joints between butting or overlapping surfaces of thoriated nickel. This method eliminates inert-phase agglomeration

    Carbon deposition in the Bosch process with ruthenium and ruthenium-iron alloy catalysts

    Get PDF
    The effectiveness of ruthenium and the alloys 50Ru50Fe and 33Ru67Fe as alternatives to iron, nickel, and cobalt catalysts in recovering oxygen from metabolic carbon dioxide was investigated. Carbon deposition boundaries over the unsupported alloys are reported. Experiments were also carried out over 50Ru50Fe and 97Ru3Fe3 catalysts supported on gamma-alumina to determine their performance in the synthesis of low molecular weight olefins. High production of ethylene and propylene would be beneficial for an improvement of an overall Bosch process, as a gas phase containing high olefin content would enhance carbon deposition in a Bosch reactor

    Development of high temperature materials for solid propellant rocket nozzle applications

    Get PDF
    Aspects of the development and characteristics of thermal shock resistant hafnia ceramic material for use in solid propellant rocket nozzles are presented. The investigation of thermal shock resistance factors for hafnia based composites, and the preparation and analysis of a model of elastic materials containing more than one crack are reported

    Development of high temperature materials for solid propellant rocket nozzle applications Quarterly progress report, 1 Jul. - 30 Sep. 1969

    Get PDF
    Refractory metal and graphite composite research for solid propellant rocket nozzle application

    Restoration of eucalypt grassy woodland: effects of experimental interventions on ground-layer vegetation

    Get PDF
    We report on the effects of broad-scale restoration treatments on the ground layer of eucalypt grassy woodland in south-eastern Australia. The experiment was conducted in two conservation reserves from which livestock grazing had previously been removed. Changes in biomass, species diversity, ground-cover attributes and life-form were analysed over a 4-year period in relation to the following experimental interventions: (1) reduced kangaroo density, (2) addition of coarse woody debris and (3) fire (a single burn). Reducing kangaroo density doubled total biomass in one reserve, but no effects on exotic biomass, species counts or ground cover attributes were observed. Coarse woody debris also promoted biomass, particularly exotic annual forbs, as well as plant diversity in one of the reserves. The single burn reduced biomass, but changed little else. Overall, we found the main driver of change to be the favourable growth seasons that had followed a period of drought. This resulted in biomass increasing by 67%, (mostly owing to the growth of perennial native grasses), whereas overall native species counts increased by 18%, and exotic species declined by 20% over the 4-year observation period. Strategic management of grazing pressure, use of fire where biomass has accumulated and placement of coarse woody debris in areas of persistent erosion will contribute to improvements in soil and vegetation condition, and gains in biodiversity, in the future.Funding and in-kind logistic support for this project was provided by the ACT Government as part of an Australian Research Council Linkage Grant (LP0561817; LP110100126). Drafts of the manuscript were read by Saul Cunningham and Ben Macdonald

    A ship-based methodology for high precision atmospheric oxygen measurements and its application in the Southern Ocean region

    Get PDF
    A method for achieving continuous high precision measurements of atmospheric O-2 is presented based on a commercially available fuel-cell instrument, (Sable Systems, Oxzilla FC-II) with a precision of 7 per meg (approximately equivalent to 1.2 ppm) for a 6-min measurement. The Oxzilla was deployed on two voyages in the Western Pacific sector of the Southern Ocean, in February 2003 and in April 2004, making these the second set of continuous O-2 measurements ever made from a ship. The results show significant temporal variation in O-2, in the order of +/- 10 per meg over 6-hourly time intervals, and substantial spatial variation. Data from both voyages show an O-2 maximum centred on 50 degrees S, which is most likely to be the result of biologically driven O-2 outgassing in the region of subtropical convergence around New Zealand, and a decreasing O-2 trend towards Antarctica. O-2 from the ship-based measurements is elevated compared with measurements from the Scripps Institution of Oceanography flask-sampling network, and the O-2 maximum is also not captured in the network observations. This preliminary study shows that ship-based continuous measurements are a valuable addition to current fixed site sampling programmes for the understanding of ocean-atmosphere O-2 exchange processes. [References: 39

    Electroslag welding of 75 to 100 ton ingots

    Get PDF
    A new process for joining large cross-section components by electroslag welding is reported that utilizes four consumable electrodes made of the same material as the ingots. A bifilar current supply provides the very large energy input to the consumerable nozzle for heating the ingots being welded. This process produces better and more homogeneous mechanical properties, better chemical composition and structure uniformity, and requires no prior or simultaneous heating of ingots during welding. It is now possible to obtain medium size ingots and join as many as are required to produce 500 or 600 ton ingots

    Glass bead shot peening retards stress corrosion failure of titanium tanks

    Get PDF
    Rigidly controlled shot peening retards the incompatibility between titanium alloys and nitrogen tetroxide in rocket-propellant storage tanks. This sets up a residual compressive stress in the surface of a material which reduces tensile stresses in the material fibers, alleviating stress corrosion

    Contesting the cruel treatment of abortion-seeking women

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Reproductive Health Matters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in REPRODUCTIVE HEALTH MATTERS, [VOL 22, ISSUE 44, (2014)] DOI: 10.1016/S0968-8080(14)44818-
    • …
    corecore