339 research outputs found
A random matrix definition of the boson peak
The density of vibrational states for glasses and jammed solids exhibits
universal features, including an excess of modes above the Debye prediction
known as the boson peak located at a frequency . We show that the
eigenvector statistics for boson peak modes are universal, and develop a new
definition of the boson peak based on this universality that displays the
previously observed characteristic scaling . We
identify a large new class of random matrices that obey a generalized global
tranlational invariance constraint and demonstrate that members of this class
also have a boson peak with precisely the same universal eigenvector
statistics. We denote this class as boson peak random matrices, and conjecture
it comprises a new universality class. We characterize the eigenvector
statistics as a function of coordination number, and find that one member of
this new class reproduces the scaling of with coordination number
that is observed near the jamming transition.Comment: 6 pages, 4 figures, Supplementary Figures available at
https://mmanning.expressions.syr.edu/epl2015
Motility-driven glass and jamming transitions in biological tissues
Cell motion inside dense tissues governs many biological processes, including
embryonic development and cancer metastasis, and recent experiments suggest
that these tissues exhibit collective glassy behavior. To make quantitative
predictions about glass transitions in tissues, we study a self-propelled
Voronoi (SPV) model that simultaneously captures polarized cell motility and
multi-body cell-cell interactions in a confluent tissue, where there are no
gaps between cells. We demonstrate that the model exhibits a jamming transition
from a solid-like state to a fluid-like state that is controlled by three
parameters: the single-cell motile speed, the persistence time of single-cell
tracks, and a target shape index that characterizes the competition between
cell-cell adhesion and cortical tension. In contrast to traditional particulate
glasses, we are able to identify an experimentally accessible structural order
parameter that specifies the entire jamming surface as a function of model
parameters. We demonstrate that a continuum Soft Glassy Rheology model
precisely captures this transition in the limit of small persistence times, and
explain how it fails in the limit of large persistence times. These results
provide a framework for understanding the collective solid-to-liquid
transitions that have been observed in embryonic development and cancer
progression, which may be associated with Epithelial-to-Mesenchymal transition
in these tissues.Comment: accepted for publication in Physical Review X, 201
- …