139 research outputs found

    Correction

    Get PDF

    Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis

    Get PDF
    Proper regulation of the phosphoinositide 3-kinase–Akt pathway is critical for the prevention of both insulin resistance and tumorigenesis. Many recent studies have characterized a negative feedback loop in which components of one downstream branch of this pathway, composed of the mammalian target of rapamycin and ribosomal S6 kinase, block further activation of the pathway through inhibition of insulin receptor substrate function. These findings form a novel basis for improved understanding of the pathophysiology of metabolic diseases (e.g., diabetes and obesity), tumor syndromes (e.g., tuberous sclerosis complex and Peutz-Jegher's syndrome), and human cancers

    Chewing the Fat on Tumor Cell Metabolism

    Get PDF
    Tumor cells undergo a metabolic shift toward specific bioenergetic (glycolysis) and anabolic (protein and lipid synthesis) processes that promote rapid growth. Nomura et al. (2010) now demonstrate that an increase in monoacylglycerol lipase (MAGL) drives tumorigenesis through the lipolytic release and remodeling of free fatty acids

    Therapeutic Trial of Metformin and Bortezomib in a Mouse Model of Tuberous Sclerosis Complex (TSC)

    Get PDF
    Tuberous sclerosis complex (TSC) is a human genetic disorder in which loss of either TSC1 or TSC2 leads to development of hamartoma lesions, which can progress and be life-threatening or fatal. The TSC1/TSC2 protein complex regulates the state of activation of mTORC1. Tsc2+/− mice develop renal cystadenoma lesions which grow progressively. Both bortezomib and metformin have been proposed as potential therapeutics in TSC. We examined the potential benefit of 1 month treatment with bortezomib, and 4 month treatment with metformin in Tsc2+/− mice. Results were compared to vehicle treatment and treatment with the mTORC1 inhibitor rapamycin for 1 month. We used a quantitative tumor volume measurement on stained paraffin sections to assess the effect of these drugs. The median tumor volume per kidney was decreased by 99% in mice treated with rapamycin (p = 0.0004). In contrast, the median tumor volume per kidney was not significantly reduced for either the bortezomib cohort or the metformin cohort. Biochemical studies confirmed that bortezomib and metformin had their expected pharmacodynamic effects. We conclude that neither bortezomib nor metformin has significant benefit in this native Tsc2+/− mouse model, which suggests limited benefit of these compounds in the treatment of TSC hamartomas and related lesions

    Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb

    Get PDF
    AbstractBackground: Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear.Results: We show that the small G protein Rheb (Ras homolog enriched in brain) is a molecular target of TSC1/TSC2 that regulates mTOR signaling. Overexpression of Rheb activates 40S ribosomal protein S6 kinase 1 (S6K1) but not p90 ribosomal S6 kinase 1 (RSK1) or Akt. Furthermore, Rheb induces phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and causes 4E-BP1 to dissociate from eIF4E. This dissociation is completely sensitive to rapamycin (an mTOR inhibitor) but not wortmannin (a phosphoinositide 3-kinase [PI3K] inhibitor). Rheb also activates S6K1 during amino acid insufficiency via a rapamycin-sensitive mechanism, suggesting that Rheb participates in nutrient signaling through mTOR. Moreover, Rheb does not activate a S6K1 mutant that is unresponsive to mTOR-mediated signals, confirming that Rheb functions upstream of mTOR. Overexpression of the Tuberin-Hamartin heterodimer inhibits Rheb-mediated S6K1 activation, suggesting that Tuberin functions as a Rheb GTPase activating protein (GAP). Supporting this notion, TSC patient-derived Tuberin GAP domain mutants were unable to inactivate Rheb in vivo. Moreover, in vitro studies reveal that Tuberin, when associated with Hamartin, acts as a Rheb GTPase-activating protein. Finally, we show that membrane localization of Rheb is important for its biological activity because a farnesylation-defective mutant of Rheb stimulated S6K1 activation less efficiently.Conclusions: We show that Rheb acts as a novel mediator of the nutrient signaling input to mTOR and is the molecular target of TSC1 and TSC2 within mammalian cells

    The multifaceted role of mTORC1 in the control of lipid metabolism

    Full text link

    The TSC-mTOR pathway regulates macrophage polarization

    Get PDF
    Macrophages are able to polarize to proinflammatory M1 or alternative M2 states with distinct phenotypes and physiological functions. How metabolic status regulates macrophage polarization remains not well understood, and here we examine the role of mTOR (Mechanistic Target of Rapamycin), a central metabolic pathway that couples nutrient sensing to regulation of metabolic processes. Using a mouse model in which myeloid lineage specific deletion of Tsc1 (Tsc1Δ/Δ) leads to constitutive mTOR Complex 1 (mTORC1) activation, we find that Tsc1Δ/Δ macrophages are refractory to IL-4 induced M2 polarization, but produce increased inflammatory responses to proinflammatory stimuli. Moreover, mTORC1-mediated downregulation of Akt signaling critically contributes to defective polarization. These findings highlight a key role for the mTOR pathway in regulating macrophage polarization, and suggest how nutrient sensing and metabolic status could be “hard-wired” to control of macrophage function, with broad implications for regulation of Type 2 immunity, inflammation, and allergy
    corecore