48 research outputs found
Vortices in quantum droplets: Analogies between boson and fermion systems
The main theme of this review is the many-body physics of vortices in quantum
droplets of bosons or fermions, in the limit of small particle numbers. Systems
of interest include cold atoms in traps as well as electrons confined in
quantum dots. When set to rotate, these in principle very different quantum
systems show remarkable analogies. The topics reviewed include the structure of
the finite rotating many-body state, universality of vortex formation and
localization of vortices in both bosonic and fermionic systems, and the
emergence of particle-vortex composites in the quantum Hall regime. An overview
of the computational many-body techniques sets focus on the configuration
interaction and density-functional methods. Studies of quantum droplets with
one or several particle components, where vortices as well as coreless vortices
may occur, are reviewed, and theoretical as well as experimental challenges are
discussed.Comment: Review article, 53 pages, 53 figure
Density Functional Theory of Multicomponent Quantum Dots
Quantum dots with conduction electrons or holes originating from several
bands are considered. We assume the particles are confined in a harmonic
potential and assume the electrons (or holes) belonging to different bands to
be different types of fermions with isotropic effective masses. The density
functional method with the local density approximation is used. The increased
number of internal (Kohn-Sham) states leads to a generalisation of Hund's first
rule at high densities. At low densitites the formation of Wigner molecules is
favored by the increased internal freedom.Comment: 11 pages, 5 figure
Vortices in fermion droplets with repulsive dipole-dipole interactions
Vortices are found in a fermion system with repulsive dipole-dipole
interactions, trapped by a rotating quasi-two-dimensional harmonic oscillator
potential. Such systems have much in common with electrons in quantum dots,
where rotation is induced via an external magnetic field. In contrast to the
Coulomb interactions between electrons, the (externally tunable) anisotropy of
the dipole-dipole interaction breaks the rotational symmetry of the
Hamiltonian. This may cause the otherwise rotationally symmetric exact
wavefunction to reveal its internal structure more directly.Comment: 5 pages, 5 figure
Universal vortex formation in rotating traps with bosons and fermions
When a system consisting of many interacting particles is set rotating, it
may form vortices. This is familiar to us from every-day life: you can observe
vortices while stirring your coffee or watching a hurricane. In the world of
quantum mechanics, famous examples of vortices are superconducting films and
rotating bosonic He or fermionic He liquids. Vortices are also observed
in rotating Bose-Einstein condensates in atomic traps and are predicted to
exist for paired fermionic atoms. Here we show that the rotation of trapped
particles with a repulsive interaction leads to a similar vortex formation,
regardless of whether the particles are bosons or (unpaired) fermions. The
exact, quantum mechanical many-particle wave function provides evidence that in
fact, the mechanism of this vortex formation is the same for boson and fermion
systems.Comment: 4 pages, 4 figure