3,779 research outputs found

    Effective Thermoelectric Power Generation in an Insulated Compartment

    Get PDF
    The Seebeck coefficient S is a temperature- and material-dependent property, which linearly and causally relates the temperature difference ΔT between the “hot” and “cold” junctions of a thermoelectric power generator (TEC-PG) to the voltage difference ΔV . This phenomenon is the Seebeck effect (SE), and can be used to convert waste heat into usable energy. This work investigates the trends of the effective voltage output ΔV (t ) and effective Seebeck coefficient S′(t ) versus several hours of activity of a solid state TEC-PG device. The effective Seebeck coefficient S′(t ) here is related to a device, not just to a material’s performance. The observations are pursued in an insulated compartment in various geometrical and environmental configurations. The results indicate that the SE does not substantially depend on the geometrical and environmental configurations. However, the effective Seebeck coefficient S′(t ) and the produced effective ΔV (t ) are affected by the environmental configuration, once the temperature is fixed. Heat transfer calculations do not completely explain this finding. Alternative explanations are hypothesized

    Taming the Runaway Problem of Inflationary Landscapes

    Full text link
    A wide variety of vacua, and their cosmological realization, may provide an explanation for the apparently anthropic choices of some parameters of particle physics and cosmology. If the probability on various parameters is weighted by volume, a flat potential for slow-roll inflation is also naturally understood, since the flatter the potential the larger the volume of the sub-universe. However, such inflationary landscapes have a serious problem, predicting an environment that makes it exponentially hard for observers to exist and giving an exponentially small probability for a moderate universe like ours. A general solution to this problem is proposed, and is illustrated in the context of inflaton decay and leptogenesis, leading to an upper bound on the reheating temperature in our sub-universe. In a particular scenario of chaotic inflation and non-thermal leptogenesis, predictions can be made for the size of CP violating phases, the rate of neutrinoless double beta decay and, in the case of theories with gauge-mediated weak scale supersymmetry, for the fundamental scale of supersymmetry breaking.Comment: 31 pages, including 3 figure

    Secondary Beam Monitors for the NuMI Facility at FNAL

    Get PDF
    The Neutrinos at the Main Injector (NuMI) facility is a conventional neutrino beam which produces muon neutrinos by focusing a beam of mesons into a long evacuated decay volume. We have built four arrays of ionization chambers to monitor the position and intensity of the hadron and muon beams associated with neutrino production at locations downstream of the decay volume. This article describes the chambers' construction, calibration, and commissioning in the beam.Comment: Accepted for publication in Nucl. Instr. Meth.

    Tur\'an numbers for Ks,tK_{s,t}-free graphs: topological obstructions and algebraic constructions

    Full text link
    We show that every hypersurface in Rs×Rs\R^s\times \R^s contains a large grid, i.e., the set of the form S×TS\times T, with S,T⊂RsS,T\subset \R^s. We use this to deduce that the known constructions of extremal K2,2K_{2,2}-free and K3,3K_{3,3}-free graphs cannot be generalized to a similar construction of Ks,sK_{s,s}-free graphs for any s≥4s\geq 4. We also give new constructions of extremal Ks,tK_{s,t}-free graphs for large tt.Comment: Fixed a small mistake in the application of Proposition

    Relativistic theory of magnetic scattering of x rays: Application to ferromagnetic iron

    Get PDF
    We present a detailed description of a first-principles formalism for magnetic scattering of circularly polar- ized x rays from solids in the framework of the fully relativistic spin-polarized multiple-scattering theory. The scattering amplitudes are calculated using a standard time-dependent perturbation theory to second order in the electron-photon interaction vertex. Particular attention is paid to understanding the relative importance of the positive- and negative-energy solutions of the Dirac equation to the scattering amplitude. The advantage of the present theory as compared with other recent works on magnetic x-ray scattering is that, being fully relativistic, spin-orbit coupling and spin-polarization effects are treated on an equal footing. Second, the electron Green’s function expressed in terms of the path operators in the multiple-scattering theory allows us to include the contribution of the crystalline environment to the scattering amplitude. To illustrate the use of the method we have done calculations on the anomalous magnetic scattering at the K , L_II , and L_III absorption edges of ferromagnetic iron

    Double Twist in Helical Polymer Soft Crystals

    Get PDF
    In natural and synthetic materials having non-racemic chiral centers, chirality and structural ordering each play a distinct role in the formation of ordered states. Configurational chirality can be extended to morphological chirality when the phase, structures possess low liquid crystalline order. In the crystalline states the crystallization process suppresses the chiral helical morphology due to strong ordering interactions, In this Letter, we report the first observation of helical single lamellar crystals of synthetic non-racemic chiral polymers. Experimental evidence shows that the molecular chains twist along both the long and short axes of the helical lamellar crystals, which is the first time a double-twist molecular orientation in a helical crystal has been observed

    Infrared and thermoelectric power generation in thin atomic layer deposited Nb-doped TiO 2

    Full text link
    Infrared radiation is used to radiatively transfer heat to a nanometric power generator (NPG) device with a thermoelectric Nb-doped TiO2 film deposited by atomic layer deposition (ALD) as the active element, onto a borosilicate glass substrate. The linear rise of the produced voltage with respect to the temperature difference between the “hot” and “cold” junctions, typical of the Seebeck effect, is missing. The discovery of the violation of the Seebeck effect in NPG devices combined with the ability of ALD to tune thermoelectric thin film properties could be exploited to increase the efficiency of these devices for energy harvesting purposes.Peer reviewe

    Hot Phonons in an Electrically Biased Graphene Constriction

    Full text link
    Phonon carrier interactions can have significant impact on device performance. They can be probed by measuring the phonon lifetime, which reflects the interaction strength of a phonon with other quasi-particles in particular charge carriers as well as its companion phonons. The carrier phonon and phonon-phonon contributions to the phonon lifetime can be disentangled from temperature dependent studies. Here, we address the importance of phonon carrier interactions in Joule-heated graphene constrictions in order to contribute to the understanding of energy dissipation in graphene based electronic devices. We demonstrate that gapless graphene grants electron phonon interactions uncommon significance in particular at low carrier density. In conventional semiconductors, the bandgap usually prevents the decay of phonons through electron-hole generation and also in metals or other semimetals the Fermi temperature is excessively large to enter the regime where electron phonon coupling plays such a dominant role as in graphene in the investigated phonon temperature regime from 300 to 1600 K.Comment: Nano Letters (Web publication on 30th Dec. 2009, DOI:10.1021/nl903167f

    An improved measurement of muon antineutrino disappearance in MINOS

    Get PDF
    We report an improved measurement of muon anti-neutrino disappearance over a distance of 735km using the MINOS detectors and the Fermilab Main Injector neutrino beam in a muon anti-neutrino enhanced configuration. From a total exposure of 2.95e20 protons on target, of which 42% have not been previously analyzed, we make the most precise measurement of the anti-neutrino "atmospheric" delta-m squared = 2.62 +0.31/-0.28 (stat.) +/- 0.09 (syst.) and constrain the anti-neutrino atmospheric mixing angle >0.75 (90%CL). These values are in agreement with those measured for muon neutrinos, removing the tension reported previously.Comment: 5 pages, 4 figures. In submission to Phys.Rev.Let
    • …
    corecore