23,927 research outputs found

    Quark-lepton symmetry and complementarity

    Full text link
    We argue that the difference between the observed approximate quark-lepton complementarity and the theoretical prediction based on realistic quark-lepton symmetry within the seesaw mechanism may be adjusted by means of a triplet contribution in the seesaw formula.Comment: 7 pages, RevTex

    Electron cyclotron maser emission mode coupling to the z-mode on a longitudinal density gradient in the context of solar type III bursts

    Get PDF
    Copyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Physics of Plasmas 19, 110702 (2012) and may be found at .supplemental material at http://astro.qmul.ac.uk/~tsiklauri/sp.htmlsupplemental material at http://astro.qmul.ac.uk/~tsiklauri/sp.htm

    The effect of electron beam pitch angle and density gradient on solar type III radio bursts

    Get PDF
    Copyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Physics of Plasmas 19, 112903 (2012) and may be found at .supplemental material at http://astro.qmul.ac.uk/~tsiklauri/sp.htmlsupplemental material at http://astro.qmul.ac.uk/~tsiklauri/sp.htm

    Quasiclassical Coarse Graining and Thermodynamic Entropy

    Get PDF
    Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no non-trivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact. Quantum theory allows for various coarse-grained descriptions some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of ``quasiclassical descriptions'' defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any description, information is sacrificed through the coarse graining that yields decoherence and gives rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in exhibiting the emergent regularities summarized by classical equations of motion. An appropriate entropy measures the loss of information. For a ``quasiclassical realm'' this is connected with the usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state of our universe and has been increasing since.Comment: 17 pages, 0 figures, revtex4, Dedicated to Rafael Sorkin on his 60th birthday, minor correction

    Self-completeness and spontaneous dimensional reduction

    Get PDF
    A viable quantum theory of gravity is one of the biggest challenges facing physicists. We discuss the confluence of two highly expected features which might be instrumental in the quest of a finite and renormalizable quantum gravity -- spontaneous dimensional reduction and self-completeness. The former suggests the spacetime background at the Planck scale may be effectively two-dimensional, while the latter implies a condition of maximal compression of matter by the formation of an event horizon for Planckian scattering. We generalize such a result to an arbitrary number of dimensions, and show that gravity in higher than four dimensions remains self-complete, but in lower dimensions it is not. In such a way we established an "exclusive disjunction" or "exclusive or" (XOR) between the occurrence of self-completeness and dimensional reduction, with the goal of actually reducing the unknowns for the scenario of the physics at the Planck scale. Potential phenomenological implications of this result are considered by studying the case of a two-dimensional dilaton gravity model resulting from dimensional reduction of Einstein gravity.Comment: 12 pages, 3 figures; v3: final version in press on Eur. Phys. J. Plu

    Flavour-Dependent Type II Leptogenesis

    Full text link
    We reanalyse leptogenesis via the out-of-equilibrium decay of the lightest right-handed neutrino in type II seesaw scenarios, taking into account flavour-dependent effects. In the type II seesaw mechanism, in addition to the type I seesaw contribution, an additional direct mass term for the light neutrinos is present. We consider type II seesaw scenarios where this additional contribution arises from the vacuum expectation value of a Higgs triplet, and furthermore an effective model-independent approach. We investigate bounds on the flavour-specific decay asymmetries, on the mass of the lightest right-handed neutrino and on the reheat temperature of the early universe, and compare them to the corresponding bounds in the type I seesaw framework. We show that while flavour-dependent thermal type II leptogenesis becomes more efficient for larger mass scale of the light neutrinos, and the bounds become relaxed, the type I seesaw scenario for leptogenesis becomes more constrained. We also argue that in general, flavour-dependent effects cannot be ignored when dealing with leptogenesis in type II seesaw models.Comment: 19 pages, 8 figures; v3: minor additions, typos corrected, results and conclusions unchange

    N-body Gravity and the Schroedinger Equation

    Get PDF
    We consider the problem of the motion of NN bodies in a self-gravitating system in two spacetime dimensions. We point out that this system can be mapped onto the quantum-mechanical problem of an N-body generalization of the problem of the H2+_{2}^{+} molecular ion in one dimension. The canonical gravitational N-body formalism can be extended to include electromagnetic charges. We derive a general algorithm for solving this problem, and show how it reduces to known results for the 2-body and 3-body systems.Comment: 15 pages, Latex, references added, typos corrected, final version that appears in CQ

    Multicomponent dense electron gas as a model of Si MOSFET

    Full text link
    We solve two-dimensional model of NN-component dense electron gas in the limit of large NN and in a range of the Coulomb interaction parameter: N3/2rs1N^{-3/2}\ll r_s\ll 1. The quasiparticle interaction on the Fermi circle vanishes as 1/N. The ground state energy and the effective mass are found as series in powers of rs2/3r_s^{2/3}. In the quantum Hall state on the lowest Landau level at integer filling: 1ν<N1\ll\nu<N, the charge activation energy gap and the exchange constant are found.Comment: 10 pages, 4 figure

    Numerical indications of a q-generalised central limit theorem

    Get PDF
    We provide numerical indications of the qq-generalised central limit theorem that has been conjectured (Tsallis 2004) in nonextensive statistical mechanics. We focus on NN binary random variables correlated in a {\it scale-invariant} way. The correlations are introduced by imposing the Leibnitz rule on a probability set based on the so-called qq-product with q1q \le 1. We show that, in the large NN limit (and after appropriate centering, rescaling, and symmetrisation), the emerging distributions are qeq_e-Gaussians, i.e., p(x)[1(1qe)β(N)x2]1/(1qe)p(x) \propto [1-(1-q_e) \beta(N) x^2]^{1/(1-q_e)}, with qe=21qq_e=2-\frac{1}{q}, and with coefficients β(N)\beta(N) approaching finite values β()\beta(\infty). The particular case q=qe=1q=q_e=1 recovers the celebrated de Moivre-Laplace theorem.Comment: Minor improvements and corrections have been introduced in the new version. 7 pages including 4 figure

    Anomaly-free constraints in neutrino seesaw models

    Full text link
    The implementation of seesaw mechanisms to give mass to neutrinos in the presence of an anomaly-free U(1)_X gauge symmetry is discussed in the context of minimal extensions of the standard model. It is shown that type-I and type-III seesaw mechanisms cannot be simultaneously implemented with an anomaly-free local U(1)_X, unless the symmetry is a replica of the well-known hypercharge. For combined type-I/II or type-III/II seesaw models it is always possible to find nontrivial anomaly-free charge assignments, which are however tightly constrained, if the new neutral gauge boson is kinematically accessible at LHC. The discovery of the latter and the measurement of its decays into third-generation quarks, as well as its mixing with the standard Z boson, would allow one to discriminate among different seesaw realizations.Comment: 5 pages, 3 figures; final version to appear in Phys. Rev.
    corecore