208 research outputs found
Evaluating system utility and conceptual fit using CASSM
There is a wealth of user-centred evaluation methods (UEMs) to support the analyst in assessing interactive systems. Many of these support detailed aspects of use – for example: Is the feedback helpful? Are labels appropriate? Is the task structure optimal? Few UEMs encourage the analyst to step back and consider how well a system supports users’ conceptual understandings and system utility. In this paper, we present CASSM, a method which focuses on the quality of ‘fit’ between users and an interactive system. We describe the methodology of conducting a CASSM analysis and illustrate the approach with three contrasting worked examples (a robotic arm, a digital library system and a drawing tool) that demonstrate different depths of analysis. We show how CASSM can help identify re-design possibilities to improve system utility. CASSM complements established evaluation methods by focusing on conceptual structures rather than procedures. Prototype tool support for completing a CASSM analysis is provided by Cassata, an open source development
A personalized patient preference predictor for substituted judgments in healthcare: technically feasible and ethically desirable
When making substituted judgments for incapacitated patients, surrogates may often struggle to
guess what the patient would want if they had capacity. Surrogates may also agonise over having the
(sole) responsibility of making such a determination. To address such concerns, a Patient Preference
Predictor (PPP) has been proposed that would use an algorithm to infer the treatment preferences of
individual patients from population-level data about the known preferences of people with similar
demographic characteristics. However, critics have suggested that even if such a PPP were more
accurate, on average, than human surrogates in accurately identifying patient preferences, the
proposed algorithm would nevertheless fail to respect the patient’s (former) autonomy since it draws
on the ‘wrong’ kind of data: namely, data that are not specific to the individual patient and which
therefore may not reflect their actual values, or their reasons for having the preferences they do.
Taking such criticisms on board, we here propose a new approach: the Personalized Patient
Preference Predictor (P4). The P4 is based on recent advances in machine learning, which allow
technologies including large language models to be more cheaply and efficiently ‘fine-tuned’ on
person-specific data. The P4, unlike the PPP, would be able to infer an individual patient’s
preferences from material (e.g., prior treatment decisions) that is in fact specific to them. Thus, we
argue, in addition to being potentially more accurate at the individual level than the previously
proposed PPP, the predictions of a P4 would also more directly reflect each patient’s own reasons
and values. In this article, we review recent discoveries in artificial intelligence research that suggest
a P4 is technically feasible, and argue that, if it is developed and appropriately deployed, it should
assuage some of the main autonomy-based concerns of critics of the original PPP. We then consider
various objections to our proposal and offer some tentative replies
Closed Timelike Curves and Holography in Compact Plane Waves
We discuss plane wave backgrounds of string theory and their relation to
Goedel-like universes. This involves a twisted compactification along the
direction of propagation of the wave, which induces closed timelike curves. We
show, however, that no such curves are geodesic. The particle geodesics and the
preferred holographic screens we find are qualitatively different from those in
the Goedel-like universes. Of the two types of preferred screen, only one is
suited to dimensional reduction and/or T-duality, and this provides a
``holographic protection'' of chronology. The other type of screen, relevant to
an observer localized in all directions, is constructed both for the compact
and non-compact plane waves, a result of possible independent interest. We
comment on the consistency of field theory in such spaces, in which there are
closed timelike (and null) curves but no closed timelike (or null) geodesics.Comment: 21 pages, 3 figures, LaTe
Widening Access to Applied Machine Learning with TinyML
Broadening access to both computational and educational resources is critical
to diffusing machine-learning (ML) innovation. However, today, most ML
resources and experts are siloed in a few countries and organizations. In this
paper, we describe our pedagogical approach to increasing access to applied ML
through a massive open online course (MOOC) on Tiny Machine Learning (TinyML).
We suggest that TinyML, ML on resource-constrained embedded devices, is an
attractive means to widen access because TinyML both leverages low-cost and
globally accessible hardware, and encourages the development of complete,
self-contained applications, from data collection to deployment. To this end, a
collaboration between academia (Harvard University) and industry (Google)
produced a four-part MOOC that provides application-oriented instruction on how
to develop solutions using TinyML. The series is openly available on the edX
MOOC platform, has no prerequisites beyond basic programming, and is designed
for learners from a global variety of backgrounds. It introduces pupils to
real-world applications, ML algorithms, data-set engineering, and the ethical
considerations of these technologies via hands-on programming and deployment of
TinyML applications in both the cloud and their own microcontrollers. To
facilitate continued learning, community building, and collaboration beyond the
courses, we launched a standalone website, a forum, a chat, and an optional
course-project competition. We also released the course materials publicly,
hoping they will inspire the next generation of ML practitioners and educators
and further broaden access to cutting-edge ML technologies.Comment: Understanding the underpinnings of the TinyML edX course series:
https://www.edx.org/professional-certificate/harvardx-tiny-machine-learnin
A Personalized Patient Preference Predictor for Substituted Judgments in Healthcare: Technically Feasible and Ethically Desirable
When making substituted judgments for incapacitated patients, surrogates often struggle to guess what the patient would want if they had capacity. Surrogates may also agonize over having the (sole) responsibility of making such a determination. To address such concerns, a Patient Preference Predictor (PPP) has been proposed that would use an algorithm to infer the treatment preferences of individual patients from population-level data about the known preferences of people with similar demographic characteristics. However, critics have suggested that even if such a PPP were more accurate, on average, than human surrogates in identifying patient preferences, the proposed algorithm would nevertheless fail to respect the patient’s (former) autonomy since it draws on the ‘wrong’ kind of data: namely, data that are not specific to the individual patient and which therefore may not reflect their actual values, or their reasons for having the preferences they do. Taking such criticisms on board, we here propose a new approach: the Personalized Patient Preference Predictor (P4). The P4 is based on recent advances in machine learning, which allow technologies including large language models to be more cheaply and efficiently ‘fine-tuned’ on person-specific data. The P4, unlike the PPP, would be able to infer an individual patient’s preferences from material (e.g., prior treatment decisions) that is in fact specific to them. Thus, we argue, in addition to being potentially more accurate at the individual level than the previously proposed PPP, the predictions of a P4 would also more directly reflect each patient’s own reasons and values. In this article, we review recent discoveries in artificial intelligence research that suggest a P4 is technically feasible, and argue that, if it is developed and appropriately deployed, it should assuage some of the main autonomy-based concerns of critics of the original PPP. We then consider various objections to our proposal and offer some tentative replies
Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis
BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
Widening Access to Applied Machine Learning With TinyML
Broadening access to both computational and educational resources is crit- ical to diffusing machine learning (ML) innovation. However, today, most ML resources and experts are siloed in a few countries and organizations. In this article, we describe our pedagogical approach to increasing access to applied ML through a massive open online course (MOOC) on Tiny Machine Learning (TinyML). We suggest that TinyML, applied ML on resource-constrained embedded devices, is an attractive means to widen access because TinyML leverages low-cost and globally accessible hardware and encourages the development of complete, self-contained applications, from data collection to deployment. To this end, a collaboration between academia and industry produced a four part MOOC that provides application-oriented instruction on how to develop solutions using TinyML. The series is openly available on the edX MOOC platform, has no prerequisites beyond basic programming, and is designed for global learners from a variety of backgrounds. It introduces real-world applications, ML algorithms, data-set engineering, and the ethi- cal considerations of these technologies through hands-on programming and deployment of TinyML applications in both the cloud and on their own microcontrollers. To facili- tate continued learning, community building, and collaboration beyond the courses, we launched a standalone website, a forum, a chat, and an optional course-project com- petition. We also open-sourced the course materials, hoping they will inspire the next generation of ML practitioners and educators and further broaden access to cutting-edge ML technologies
- …