24 research outputs found

    Combining Genomic Biomarkers to Guide Immunotherapy in Non-Small Cell Lung Cancer

    Get PDF
    PURPOSE:The clinical value of STK11, KEAP1, and EGFR alterations for guiding immune checkpoint blockade (ICB) therapy in non-small cell lung cancer (NSCLC) remains controversial, as some patients with these proposed resistance biomarkers show durable ICB responses. More specific combinatorial biomarker approaches are urgently needed for this disease. EXPERIMENTAL DESIGN: To develop a combinatorial biomarker strategy with increased specificity for ICB unresponsiveness in NSCLC, we performed a comprehensive analysis of 254 patients with NSCLC treated with ligand programmed death-ligand 1 (PD-L1) blockade monotherapy, including a discovery cohort of 75 patients subjected to whole-genome sequencing (WGS), and an independent validation cohort of 169 patients subjected to tumor-normal large panel sequencing. The specificity of STK11/KEAP1/EGFR alterations for ICB unresponsiveness was assessed in the contexts of a low (&lt;10 muts/Mb) or high (≥10 muts/Mb) tumor mutational burden (TMB).RESULTS:In low TMB cases, STK11/KEAP1/EGFR alterations were highly specific biomarkers for ICB resistance, with 0/15 (0.0%) and 1/34 (2.9%) biomarker-positive patients showing treatment benefit in the discovery and validation cohorts, respectively. This contrasted with high TMB cases, where 11/13 (85%) and 15/34 (44%) patients with at least one STK11/KEAP1/EGFR alteration showed durable treatment benefit in the discovery and validation cohorts, respectively. These findings were supported by analyses of progression-free survival and overall survival. CONCLUSIONS: The unexpected ICB responses in patients carrying resistance biomarkers in STK11, KEAP1, and EGFR were almost exclusively observed in patients with a high TMB. Considering these alterations in context, the TMB offered a highly specific combinatorial biomarker strategy for limiting overtreatment in NSCLC.</p

    Combining Genomic Biomarkers to Guide Immunotherapy in Non-Small Cell Lung Cancer

    Get PDF
    PURPOSE:The clinical value of STK11, KEAP1, and EGFR alterations for guiding immune checkpoint blockade (ICB) therapy in non-small cell lung cancer (NSCLC) remains controversial, as some patients with these proposed resistance biomarkers show durable ICB responses. More specific combinatorial biomarker approaches are urgently needed for this disease. EXPERIMENTAL DESIGN: To develop a combinatorial biomarker strategy with increased specificity for ICB unresponsiveness in NSCLC, we performed a comprehensive analysis of 254 patients with NSCLC treated with ligand programmed death-ligand 1 (PD-L1) blockade monotherapy, including a discovery cohort of 75 patients subjected to whole-genome sequencing (WGS), and an independent validation cohort of 169 patients subjected to tumor-normal large panel sequencing. The specificity of STK11/KEAP1/EGFR alterations for ICB unresponsiveness was assessed in the contexts of a low (&lt;10 muts/Mb) or high (≥10 muts/Mb) tumor mutational burden (TMB).RESULTS:In low TMB cases, STK11/KEAP1/EGFR alterations were highly specific biomarkers for ICB resistance, with 0/15 (0.0%) and 1/34 (2.9%) biomarker-positive patients showing treatment benefit in the discovery and validation cohorts, respectively. This contrasted with high TMB cases, where 11/13 (85%) and 15/34 (44%) patients with at least one STK11/KEAP1/EGFR alteration showed durable treatment benefit in the discovery and validation cohorts, respectively. These findings were supported by analyses of progression-free survival and overall survival. CONCLUSIONS: The unexpected ICB responses in patients carrying resistance biomarkers in STK11, KEAP1, and EGFR were almost exclusively observed in patients with a high TMB. Considering these alterations in context, the TMB offered a highly specific combinatorial biomarker strategy for limiting overtreatment in NSCLC.</p

    A brief report on combination chemotherapy and anti–programmed death (ligand) 1 treatment in small-cell lung cancer: Did we choose the optimal chemotherapy backbone?

    Get PDF
    Extensive-stage small-cell lung cancer (ES-SCLC) is an aggressive cancer that remains very hard to treat. The life expectancy of a patient diagnosed with this disease has not changed over the past three decades. Recently, three large clinical studies showed a survival benefit by adding an anti–programmed death (ligand) 1 (PD-(L)1 antibody to the current chemotherap

    Exploring the Cost Effectiveness of a Whole-Genome Sequencing-Based Biomarker for Treatment Selection in Patients with Advanced Lung Cancer Ineligible for Targeted Therapy

    Get PDF
    Objective: We aimed to perform an early cost-effectiveness analysis of using a whole-genome sequencing-based tumor mutation burden (WGS-TMB), instead of programmed death-ligand 1 (PD-L1), for immunotherapy treatment selection in patients with non-squamous advanced/metastatic non-small cell lung cancer ineligible for targeted therapy, from a Dutch healthcare perspective. Methods: A decision-model simulating individual patients with metastatic non-small cell lung cancer was used to evaluate diagnostic strategies to select first-line immunotherapy only or the immunotherapy plus chemotherapy combination. Treatment was selected using PD-L1 [A, current practice], WGS-TMB [B], and both PD-L1 and WGS-TMB [C]. Strategies D, E, and F take into account a patient’s disease burden, in addition to PD-L1, WGS-TMB, and both PD-L1 and WGS-TMB, respectively. Disease burden was defined as a fast-growing tumor, a high number of metastases, and/or weight loss. A threshold of 10 mutations per mega-base was used to classify patients into TMB-high and TMB-low groups. Outcomes were discounted quality-adjusted life-years (QALYs) and healthcare costs measured from the start of first-line treatment to death. Healthcare costs includes drug acquisition, follow-up costs, and molecular diagnostic tests (i.e., standard diagnostic techniques and/or WGS for strategies involving TMB). Results were reported using the net monetary benefit at a willingness-to-pay threshold of €80,000/QALY. Additional scenario and threshold analyses were performed. Results: Strategy B had the lowest QALYs (1.84) and lowest healthcare costs (€120,800). The highest QALYs and healthcare costs were 2.00 and €140,400 in strategy F. In the base-case analysis, strategy A was cost effective with the highest net monetary benefit (€27,300), followed by strategy B (€26,700). Strategy B was cost effective when the cost of WGS testing was decreased by at least 24% or when immunotherapy results in an additional 0.5 year of life gained or more for TMB high compared with TMB low. Strategies C and F, which combined TMB and PD-L1 had the highest net monetary benefit (≥ €76,900) when the cost of WGS testing, immunotherapy, and chemotherapy acquisition were simultaneously reduced by at least 47%, 39%, and 43%, respectively. Furthermore, strategy C resulted in the highest net monetary benefit (≥ €39,900) in a scenario where patients with both PD-L1 low and TMB low were treated with chemotherapy instead of immunotherapy plus chemotherapy. Conclusions: The use of WGS-TMB is not cost effective compared to PD-L1 for immunotherapy treatment selection in non-squamous metastatic non-small cell lung cancer in the Netherlands. WGS-TMB could become cost effective provided there is a reduction in the cost of WGS testing or there is an increase in the predictive value of WGS-TMB for immunotherapy effectiveness. Alternatively, a combination strategy of PD-L1 testing with WGS-TMB would be cost effective if used to support the choice to withhold immunotherapy in patients with a low expected benefit of immunotherapy.</p

    Exploring the Cost Effectiveness of a Whole-Genome Sequencing-Based Biomarker for Treatment Selection in Patients with Advanced Lung Cancer Ineligible for Targeted Therapy

    Get PDF
    Objective: We aimed to perform an early cost-effectiveness analysis of using a whole-genome sequencing-based tumor mutation burden (WGS-TMB), instead of programmed death-ligand 1 (PD-L1), for immunotherapy treatment selection in patients with non-squamous advanced/metastatic non-small cell lung cancer ineligible for targeted therapy, from a Dutch healthcare perspective. Methods: A decision-model simulating individual patients with metastatic non-small cell lung cancer was used to evaluate diagnostic strategies to select first-line immunotherapy only or the immunotherapy plus chemotherapy combination. Treatment was selected using PD-L1 [A, current practice], WGS-TMB [B], and both PD-L1 and WGS-TMB [C]. Strategies D, E, and F take into account a patient’s disease burden, in addition to PD-L1, WGS-TMB, and both PD-L1 and WGS-TMB, respectively. Disease burden was defined as a fast-growing tumor, a high number of metastases, and/or weight loss. A threshold of 10 mutations per mega-base was used to classify patients into TMB-high and TMB-low groups. Outcomes were discounted quality-adjusted life-years (QALYs) and healthcare costs measured from the start of first-line treatment to death. Healthcare costs includes drug acquisition, follow-up costs, and molecular diagnostic tests (i.e., standard diagnostic techniques and/or WGS for strategies involving TMB). Results were reported using the net monetary benefit at a willingness-to-pay threshold of €80,000/QALY. Additional scenario and threshold analyses were performed. Results: Strategy B had the lowest QALYs (1.84) and lowest healthcare costs (€120,800). The highest QALYs and healthcare costs were 2.00 and €140,400 in strategy F. In the base-case analysis, strategy A was cost effective with the highest net monetary benefit (€27,300), followed by strategy B (€26,700). Strategy B was cost effective when the cost of WGS testing was decreased by at least 24% or when immunotherapy results in an additional 0.5 year of life gained or more for TMB high compared with TMB low. Strategies C and F, which combined TMB and PD-L1 had the highest net monetary benefit (≥ €76,900) when the cost of WGS testing, immunotherapy, and chemotherapy acquisition were simultaneously reduced by at least 47%, 39%, and 43%, respectively. Furthermore, strategy C resulted in the highest net monetary benefit (≥ €39,900) in a scenario where patients with both PD-L1 low and TMB low were treated with chemotherapy instead of immunotherapy plus chemotherapy. Conclusions: The use of WGS-TMB is not cost effective compared to PD-L1 for immunotherapy treatment selection in non-squamous metastatic non-small cell lung cancer in the Netherlands. WGS-TMB could become cost effective provided there is a reduction in the cost of WGS testing or there is an increase in the predictive value of WGS-TMB for immunotherapy effectiveness. Alternatively, a combination strategy of PD-L1 testing with WGS-TMB would be cost effective if used to support the choice to withhold immunotherapy in patients with a low expected benefit of immunotherapy.</p

    Combining Genomic Biomarkers to Guide Immunotherapy in Non-Small Cell Lung Cancer

    Get PDF
    Purpose: The clinical value of STK11, KEAP1, and EGFR alterations for guiding immune checkpoint blockade (ICB) therapy in non-small cell lung cancer (NSCLC) remains controversial, as some patients with these proposed resistance biomarkers show durable ICB responses. More specific combinatorial biomarker approaches are urgently needed for this disease. Experimental Design: To develop a combinatorial biomarker strategy with increased specificity for ICB unresponsiveness in NSCLC, we performed a comprehensive analysis of 254 patients with NSCLC treated with ligand programmed death-ligand 1 (PD-L1) blockade monotherapy, including a discovery cohort of 75 patients subjected to whole-genome sequencing (WGS), and an independent validation cohort of 169 patients subjected to tumor-normal large panel sequencing. The specificity of STK11/KEAP1/EGFR alterations for ICB unresponsiveness was assessed in the contexts of a low (<10 muts/Mb) or high (≥10 muts/Mb) tumor mutational burden (TMB). Results: In low TMB cases, STK11/KEAP1/EGFR alterations were highly specific biomarkers for ICB resistance, with 0/15 (0.0%) and 1/34 (2.9%) biomarker-positive patients showing treatment benefit in the discovery and validation cohorts, respectively. This contrasted with high TMB cases, where 11/13 (85%) and 15/34 (44%) patients with at least one STK11/ KEAP1/EGFR alteration showed durable treatment benefit in the discovery and validation cohorts, respectively. These findings were supported by analyses of progression-free survival and overall survival. Conclusions: The unexpected ICB responses in patients carrying resistance biomarkers in STK11, KEAP1, and EGFR were almost exclusively observed in patients with a high TMB. Considering these alterations in context, the TMB offered a highly specific combinatorial biomarker strategy for limiting overtreatment in NSCLC

    The role of inhibitory neurons in the ventromedial medulla in the control of locomotion.

    No full text
    Locomotion is a complex function that requires the control of initiation, posture, speed, rhythm, tone and direction. These features allow normal gait performances. In the elderly, gait is often impaired. This is frequently the result of a neurological disease. To develop effective treatments we need to understand the neural circuitries involved in both normal and pathological gait. To perform a motor task the integrated activity of a diverse set of neural circuits is demanded. A variety of regions in the nervous system aid in the execution of locomotion, from spinal motoneurons to spinal interneurons, to brainstem reticulospinal systems and forebrain and midbrain control regions. Motoneurons innervating different muscles are organized into distinct longitudinal columns in the ventral horn of the spinal cord. In mice, the species used in this project, the cervical cord contains motoneurons steering fore limb muscles and the lumbar cord contains motoneurons steering hind limb muscles active during locomotion. It is widely accepted that the spinal cord contains sets of interneurons that have assembled themselves into ordered networks capable of controlling activity and output of spinal motoneurons. These networks, central pattern generators (CPG’s), are the link between the brain and the motoneurons. In this project, we will focus on the projections to motoneurons from the ventromedial medulla, a part of the brainstem. These projections descend trough the reticulospinal system. Besides excitatory and serotonergic neurons, the medulla contains inhibitory reticulospinal (vgat+) neuronen, projecting to motoneurons. Interestingly, some motoneuron groups do receive a larger projection from this system than others and this system seems to project directly to motoneurons, bypassing the CPG’s. We would like to know which motoneuron pools the most projections receive and what the function of this inhibitory system is. New techniques allow us to genetically dissect the role of inhibitory, excitatory and serotonergic neurons in the medulla. The use of conditional adeno associated viral vectors (AAVs) makes it possible to visualize only those neurons that express cre-recombinase with a tracer. An antergrade tracer is injected in vgat+ neurons in the ventromedial medulla and is transported to the ventral horn of the spinal cord, A retrograde tracer is injected in the muscles and is transported to the motoneurons in the ventral horn of the spinal cord. Immunohistochemistry allowed the visualization of both tracers in the confocal microscope. We expected the inhibitory projections from the VMM to target specific areas of the spinal ventral horn and not being evenly distributed to every motoneuron pool. The results do show a difference between the amount of projections received by motoneuron pools of different muscles. In the cervical enlargement, the triceps does get a hard hit of this inhibitory medullary system and in the lumbar enlargement, the gastrocnemius is striking. Looking at the total numbers, the lumbar enlargement seems to get a slightly stronger projection than the cervical enlargement. However, the relatively small amount of data per muscle and per mouse did not allow the performance of meaningful statistical tests. In the future, implanting the triceps and the gastrocnemius muscles with EMG wires is likely to produce interesting data.

    Observed versus modelled lifetime overall survival of targeted therapies and immunotherapies for advanced non-small cell lung cancer patients – A systematic review

    No full text
    Outcomes used for the effectiveness (median) and cost-effectiveness (mean) on overall survival (OS) are different and can vary from one another. Therefore, we compared median and mean OS gains of targeted therapies and immunotherapies for stage IIIB/IV Non-small cell lung cancer and explored underlying aspect. Eligible trials were searched in PubMed, survival curves were digitized, and parametric survival models fitted to model the mean OS. Twenty-seven trials were found for targeted therapies (n = 17) and immunotherapies (n = 10). Differences between median and mean OS gains in months ranged from −2.8 to 6.8 and −4.9 to 0.3 for two different subgroups of targeted therapies, and −2.4 to 11.4 for immunotherapies. The mean OS gain was substantially larger for most immunotherapy trials, due to relatively long survival. Median and mean OS gains did not differ for targeted therapies. Our findings imply a potential discrepancy between the estimates of effectiveness and cost-effectiveness of cancer treatments
    corecore