34 research outputs found

    Artemisinin-Daumone Hybrid Inhibits Cancer Cell-Mediated Osteolysis by Targeting Cancer Cells and Osteoclasts

    Get PDF
    Background/Aims: Bone metastasis of cancer cells decreases patient survival and quality of life. Hybridization via the covalent coupling of two bioactive natural products is a useful strategy for developing more potent anticancer agents by enhancing their bioavailability and avoiding drug resistance. Methods: The in vivo activities of artemisinin-daumone hybrid 15 (ARTD) were estimated in cancer cell-inoculated mice and ovariectomized mice. The viability, migration, and invasion of cancer cells were measured via MTT, wound-healing, and transwell invasion assays. ARTD-regulated transcription factors were detected with an RT2 profiler PCR array kit and Western blotting. Osteoclastogenesis and osteoclast activity were detected with tartrate-resistant acid phosphatase staining, a pit formation assay, gelatin zymography, and a cathepsin K ELISA assay. Results: ARTD blocked cancer-associated osteolysis more potently than artemisinin in mice with intratibially inoculated breast cancer or lung cancer cells. ARTD inhibited the viability, migration, and invasion of breast and lung cancer cells in the absence or presence of transforming growth factor-ÎČ1. ARTD treatment induced the expression of tumor suppressive activating transcription factor 3 and inhibited oncogenic E2F transcription factor 1 expression at the mRNA and protein levels. ARTD inhibited receptor activator of nuclear factor kappa-B ligand-induced osteoclast formation and bone resorbing activity by reducing the secreted levels of matrix metalloproteinase-9 and cathepsin K. Furthermore, ARTD prevented estrogen deficiency-induced bone loss in ovariectomized mice. Conclusion: ARTD may be a promising candidate for inhibiting cancer-induced bone destruction. The application of ARTD may be extended to patients with chemotherapy-induced ovarian failure or postmenopausal osteoporosis

    Acetylcholinesterase Inhibition by Flavonoids from Agrimonia pilosa

    No full text
    In a bioassay-guided search for acetylcholinesterase (AChE) inhibitors from 180 medicinal plants, an ethyl acetate extract of whole plants of Agrimonia pilosa ledeb yielded tiliroside (1), 3-methoxy quercetin (2), quercitrin (3) and quercetin (4). We report herein for the first time that all four flavonol compounds showed significant inhibitory effects on AChE, particularly quercetin (4), which showed twice the activity of dehydroevodiamine (DHED)

    Acetylcholinesterase Inhibition by Flavonoids from Agrimonia pilosa

    No full text
    In a bioassay-guided search for acetylcholinesterase (AChE) inhibitors from 180 medicinal plants, an ethyl acetate extract of whole plants of Agrimonia pilosa ledeb yielded tiliroside (1), 3-methoxy quercetin (2), quercitrin (3) and quercetin (4). We report herein for the first time that all four flavonol compounds showed significant inhibitory effects on AChE, particularly quercetin (4), which showed twice the activity of dehydroevodiamine (DHED)

    Practical Synthesis of Chalcone Derivatives and Their Biological Activities

    No full text
    Practical synthesis and biological activities of 4-hydroxy-3-methoxy-2-propene derivatives are described. The novel chalcone derivatives were prepared by acid catalysed one-step condensation of 1,3- or 1,4-diacetylbenzene and 1,3,5-triacetylbenzene with 4-hydroxy-3-methoxybenzaldehyde. They were then evaluated for free radical scavenging activity, suppression of lipopolysaccharides (LPS)-induced NO generation, and anti-excitotoxicity in vitro. It was found that all compounds showed good effects for 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, LPS-induced NO generation, and anti-neurotoxicity. Compounds 6 and 7 were potent suppressor of NO generation with the concentration range 10 ”M and especially compound 8 showed very potent anti-inflammatory activity with 1 ”M. In addition, the di- and tri-acetylbenzyl derivatives 6, 7, and 8 showed enhanced anti-neurotoxicity activity in cultured cortical neurons. Molecular modelling studies to investigate the chemical structural characteristics required for the enhanced biological activities interestingly revealed that compound 8 has the smallest highest occupied molecular orbital-lowest energy unoccupied molecular orbital (HOMO-LUMO) gap, which signifies easy electron and radical transfer between HOMO and LUMO in model studies

    Synthesis, stability, and antimalarial activity of new hydrolytically stable and water-soluble (+)-deoxoartelinic acid.

    No full text
    (+)-Deoxoartelinic acid (13), a new hydrolytically stable, water-soluble, and potent non-acetal-type antimalarial drug candidate, was successfully prepared from artemisinic acid by using sulfur ylide and photooxygenative cyclization in seven steps. This compound showed superior in vitro antimalarial activity against the chloroquine-resistant K1 strain of Plasmodium falciparum and higher suppression (98.7%) than arteether in vivo against Plasmodium chabaudi infected mice. (+)-Deoxoartelinic acid also showed remarkable stability with a half-life of 258.66 h, 23 times more stable than clinically useful arteether in simulated stomach acid, and improved solubility, 4 times more soluble than artemisinin in water
    corecore