2 research outputs found

    Scintillation Observations and Response of The Ionosphere to Electrodynamics (SORTIE) Mission First Light

    Get PDF
    At low and middle latitudes, wave-like plasma perturbations are thought to provide the seeds for larger perturbations that may evolve non-linearly to produce irregularities, which in turn have deleterious effects on HF communications and global positioning systems. Unfortunately, there is currently no comprehensive atlas of measurements describing the global spatial or temporal distribution of wave-like perturbations in the ionosphere. The SORTIE mission, a CubeSat experiment with team members from ASTRA, AFRL, UTD, and Boston College, was designed to help map and further understand the wave-like plasma perturbation distributions throughout the ionosphere. The SORTIE 6U CubeSat sensor package measures key in-situ plasma parameters, and includes an ion velocity meter and a planar Langmuir probe. SORTIE will provide (1) the initial spectrum of wave perturbations which are the starting point for plasma instabilities; (2) measured electric fields which determine the magnitude of the instability growth rate near the region where plasma bubbles are generated; (3) initial observations of irregularities in plasma density which result from plasma instability growth. The SORTIE spacecraft was deployed from the ISS in February 2020 and began data collections shortly after orbit insertion. The measurements are expected to continue for at least a year. In this presentation we present the first light results of the SORTIE mission, as well as reviewing the science objectives and providing an overview of the spacecraft and instruments

    Science CONOPS for Application of SPORT Mission Data to Study Large (~1000km) Ionospheric Plasma Depletions

    Get PDF
    The Scintillation Prediction Observations Research Task (SPORT) mission is a single 6U CubeSat space weather satellite planned for an October 2022 launch into an ISS-like orbit. The primary purpose of the SPORT mission is to determine the longitudinal effects on equatorial plasma bubble (EPB) growth resulting from the offset dipole magnetic field of the Earth. By combining field and plasma measurements from SPORT with other low-altitude (i.e., alt \u3c 1000 km) spacecraft, it is possible to investigate large-scale (\u3e 1000 km) EPB structures. The types of investigation made possible by measurements from SPORT and other contemporaneous missions include 1) dynamics of depleted magnetic flux tubes; 2) dynamics of field-aligned EPB expansion versus propagation speed; 3) EPB vertical extent; and 4) EPB temporal evolution. To support these investigation types, the respective modes of conjunctions are: 1) simultaneous intersection of a magnetic flux tube; 2) intersection of magnetic flux tube separated in time; 3) Simultaneous Latitude/Longitude position conjunction; and 4) Non-simultaneous latitude/longitude position conjunction. This paper will summarize the SPORT satellite and data used for Science CONOPS to accomplish these objectives
    corecore