290 research outputs found

    Ab Initio Study of Hybrid b-bar-gb Mesons

    Full text link
    Hybrid b-bar-gb molecules in which the heavy b-bar-b pair is bound together by the excited gluon field g are studied using the Born-Oppenheimer expansion and numerical simulations. The consistency of results from the two approaches reveals a simple and compelling physical picture for heavy hybrid states.Comment: 4 pages, 3 figures, uses REVTeX and epsf, final published versio

    Unquenched Charmonium with NRQCD - Lattice 2000

    Get PDF
    We present results from a series of NRQCD simulations of the charmonium system, both in the quenched approximation and with n_f = 2 dynamical quarks. The spectra show evidence for quenching effects of ~10% in the S- and P-hyperfine splittings. We compare this with other systematic effects. Improving the NRQCD evolution equation altered the S-hyperfine by as much as 20 MeV, and we estimate radiative corrections may be as large as 40%.Comment: Lattice 2000 (Heavy Quark Physics

    Measuring the aspect ratio renormalization of anisotropic-lattice gluons

    Get PDF
    Using tadpole inproved actions we investigate the consistency between different methods of measuring the aspect ratio renormalization of anisotropic-lattice gluons for bare aspect ratios \chi_0=4,6,10 and inverse lattice spacing in the range a_s^{-1}=660-840 MeV. The tadpole corrections to the action, which are established self-consistently, are defined for two cases, mean link tadpoles in Landau gauge and gauge invariant mean plaquette tadpoles. Parameters in the latter case exhibited no dependence on the spatial lattice size, L, while in the former, parameters showed only a weak dependence on L easily extrapolated to L=\infty. The renormalized anisotropy \chi_R was measured using both the torelon dispersion relation and the sideways potential method. We found good agreement between these different approaches. Any discrepancy was at worst 3-4% which is consistent with the effect of lattice artifacts that for the torelon we estimate as O(\a_Sa_s^2/R^2) where R is the flux-tube radius. We also present some new data that suggests that rotational invariance is established more accurately for the mean-link action than the plaquette action.Comment: LaTeX 18 pages including 7 figure

    Tadpole renormalization and relativistic corrections in lattice NRQCD

    Get PDF
    We make a comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and NRQCD actions are analyzed using the mean-link u0,Lu_{0,L} in Landau gauge, and using the fourth root of the average plaquette u0,Pu_{0,P}. Simulations are done for ccˉc\bar c, bcˉb\bar c, and bbˉb\bar b systems. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at lattice spacings in the range of about 0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole renormalization using u0,Lu_{0,L}. This includes much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,Lu_{0,L} is used. We also find that relativistic corrections to the spin splittings are smaller when u0,Lu_{0,L} is used, particularly for the ccˉc\bar c and bcˉb\bar c systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units. Simulations with u0,Lu_{0,L} also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,Lu_{0,L} is used, compared to when u0,Pu_{0,P} is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and references

    O(a)-improved quark action on anisotropic lattices and perturbative renormalization of heavy-light currents

    Get PDF
    We investigate the Symanzik improvement of the Wilson quark action on anisotropic lattices. Taking first a general action with nearest-neighbor and clover interactions, we study the mass dependence of the ratio of the hopping parameters, the clover coefficients, and an improvement coefficient for heavy-light vector and axial vector currents. We show how tree-level improvement can be achieved. For a particular choice of the spatial Wilson coupling, the results simplify, and O(m0aτ)O(m_0a_\tau) improvement is possible. (Here m0m_0 is the bare quark mass and aτa_\tau the temporal lattice spacing.) With this choice we calculate the renormalization factors of heavy-light bilinear operators at one-loop order of perturbation theory employing the standard plaquette gauge action.Comment: 26 pages, 8 figure

    Comparison Studies of Finite Momentum Correlators on Anisotropic and Isotropic Lattices

    Get PDF
    We study hadronic two- and three-point correlators relevant for heavy to light pseudoscalar meson semi-leptonic decays, using Symanzik improved glue, D234 light quark and NRQCD heavy quark actions. Detailed comparisons are made between simulations on anisotropic and isotropic lattices involving finite momentum hadrons. We find evidence that having an anisotropy helps in extracting better signals at higher momenta. Initial results for the form factors f_+(q^2) and f_0(q^2) are presented with tree-level matching of the lattice heavy-light currents.Comment: 43 pages with 50 postscript figure

    Heavy Quarks on Anisotropic Lattices: The Charmonium Spectrum

    Get PDF
    We present results for the mass spectrum of ccˉc{\bar c} mesons simulated on anisotropic lattices where the temporal spacing ata_t is only half of the spatial spacing asa_s. The lattice QCD action is the Wilson gauge action plus the clover-improved Wilson fermion action. The two clover coefficients on an anisotropic lattice are estimated using mean links in Landau gauge. The bare velocity of light νt\nu_t has been tuned to keep the anisotropic, heavy-quark Wilson action relativistic. Local meson operators and three box sources are used in obtaining clear statistics for the lowest lying and first excited charmonium states of 1S0^1S_0, 3S1^3S_1, 1P1^1P_1, 3P0^3P_0 and 3P1^3P_1. The continuum limit is discussed by extrapolating from quenched simulations at four lattice spacings in the range 0.1 - 0.3 fm. Results are compared with the observed values in nature and other lattice approaches. Finite volume effects and dispersion relations are checked.Comment: 36 pages, 6 figur

    Gauge Theories on a 2+2 Anisotropic Lattice

    Get PDF
    The implementation of gauge theories on a four-dimensional anisotropic lattice with two distinct lattice spacings is discussed, with special attention to the case where two axes are finely and two axes are coarsely discretized. Feynman rules for the Wilson gauge action are derived and the renormalizability of the theory and the recovery of the continuum limit are analyzed. The calculation of the gluon propagator and the restoration of Lorentz invariance in on-shell states is presented to one-loop order in lattice perturbation theory for SU(Nc)SU(N_c) on both 2+2 and 3+1 lattices.Comment: 27 pages, uses feynmf. Font compatibility adjuste

    Heavy-light Mesons and Baryons with b quarks

    Get PDF
    We present lattice results for the spectrum of mesons containing one heavy quark and of baryons containing one or two heavy quarks. The calculation is done in the quenched approximation using the NRQCD formalism for the heavy quark. We analyze the dependence of the mass splittings on both the heavy and the light quark masses. Meson P-state fine structure and baryon hyperfine splittings are resolved for the first time. We fix the b quark mass using both M_B and M_{\Lambda_b}, and our best estimate is m_b^\MSbar(m_b^\MSbar) = 4.35(10)({}^{-3}_{+2})(10) GeV. The spectrum, obtained by interpolation to m_b, is compared with the experimental data.Comment: 34 pages, LaTeX, 13 postscript figures, version as publish in Phys. Rev.
    • …
    corecore