6 research outputs found

    The role of tubulin-tubulin lattice contacts in the mechanism of microtubule dynamic instability

    Get PDF
    Microtubules form from longitudinally and laterally assembling tubulin α/β-dimers. The assembly induces strain in tubulin, resulting in cycles of microtubule catastrophe and regrowth. This so-called dynamic instability is governed by GTP hydrolysis that renders the microtubule lattice unstable, but it is unclear how. We used the human microtubule nucleating and stabilising neuronal protein doublecortin and high-resolution cryo-EM to capture tubulin’s elusive hydrolysis intermediate GDP.Pi state, alongside the pre-hydrolysis analogue GMPCPP state, and the post-hydrolysis GDP state with and without an anti-cancer drug Taxol®. GTP hydrolysis to GDP.Pi, followed by Pi release, constitute distinct structural transitions, causing unevenly distributed compressions of tubulin dimers, thereby tightening longitudinal and loosening lateral inter-dimer contacts. We conclude that microtubule catastrophe is triggered because the lateral contacts can no longer counteract the strain energy stored in the lattice, while reinforcement of the longitudinal contacts may support generation of force

    Å cryo-EM structure of ex vivo RML prion fibrils

    Get PDF
    Mammalian prions propagate as distinct strains and are composed of multichain assemblies of misfolded host-encoded prion protein (PrP). Here, we present a near-atomic resolution cryo-EM structure of PrP fibrils present in highly infectious prion rod preparations isolated from the brains of RML prion-infected mice. We found that prion rods comprise single-protofilament helical amyloid fibrils that coexist with twisted pairs of the same protofilaments. Each rung of the protofilament is formed by a single PrP monomer with the ordered core comprising PrP residues 94–225, which folds to create two asymmetric lobes with the N-linked glycans and the glycosylphosphatidylinositol anchor projecting from the C-terminal lobe. The overall architecture is comparable to that of recently reported PrP fibrils isolated from the brain of hamsters infected with the 263K prion strain. However, there are marked conformational variations that could result from differences in PrP sequence and/or represent distinguishing features of the distinct prion strains

    Expert recommendation from the Swiss Amyloidosis Network (SAN) for systemic AL-amyloidosis.

    Get PDF
    Systemic amyloidosis is a heterogeneous group of diseases associated with protein misfolding into insoluble beta-sheet rich structures that deposit extracellularly in different organs, eventually compromising their function. There are more than 30 different proteins, known to be amyloidogenic with “light chain” (AL)-amyloidosis being the most common type, followed by transthyretin (ATTR)-, and amyloid protein A (AA)-amyloidosis. Systemic amyloidosis is a rare disease with an incidence of around 10 patients in 1 million inhabitants. Recently several new therapeutic options have been developed for subgroups of amyloidosis patients, and the introduction of novel therapies for plasma cell myeloma has led to an increase in the therapeutic armamentarium for plasma cell disorders, including AL amyloidosis. Among them, proteasome inhibitors, immunomodulatory agents (-imids), and monoclonal antibodies have been successfully introduced into clinical practice. Still, high-quality data from randomised controlled trials regarding the benefit of these cost-intensive drugs in AL amyloidosis are widely lacking, and due to the rarity of the disease many physicians will not gain routine experience in the management of these frail patients. The diagnosis of AL amyloidosis relies on a close collaboration between clinicians, pathologists, imaging experts, and sometimes geneticists. Diagnosis and treatment options in this complex disorder should be discussed in dedicated multidisciplinary boards. In January 2020, the first meeting of the Swiss Amyloidosis Network took place in Zurich, Switzerland. One aim of this meeting was to establish a consensus guideline regarding the diagnostic work-up and the treatment recommendations for systemic amyloidosis tailored to the Swiss health care system. Forty-five participants from different fields in medicine discussed many aspects of amyloidosis. These are the Swiss Amyloidosis Network recommendations which focus on diagnostic work-up and treatment of AL-amyloidosis

    Computational and Experimental Progress on the Structure and Chemical Reactivity of Procyanidins: Their Potential as Metalloproteinases Inhibitors

    No full text

    Mechanism and Inhibition of Matrix Metalloproteinases

    No full text
    corecore