170 research outputs found
Debris and micrometeorite impact measurements in the laboratory
A method was developed to simulate space debris in the laboratory. This method, which is an outgrowth of research in inertial confinement fusion (ICF), uses laser ablation to accelerate material. Using this method, single 60 micron aluminum spheres were accelerated to 15 km/sec and larger 500 micron aluminum spheres were accelerated to 2 km/sec. Also, many small (less than 10 micron diameter) irregularly shaped particles were accelerated to speeds of 100 km/sec
The influence of strength of hyperon-hyperon interactions on neutron star properties
An equation of state of neutron star matter with strange baryons has been
obtained. The effects of the strength of hyperon-hyperon interactions on the
equations of state constructed for the chosen parameter sets have been
analyzed. Numerous neutron star models show that the appearance of hyperons is
connected with the increasing density in neutron star interiors. The performed
calculations have indicated that the change of the hyperon-hyperon coupling
constants affects the chemical composition of a neutron star. The obtained
numerical hyperon star models exclude large population of strange baryons in
the star interior.Comment: 18 pages, 22 figures, accepted to be published in Journal of Physics
G: Nuclear and Particle Physic
Cholinergic and dopaminergic effects on prediction error and uncertainty responses during sensory associative learning
Navigating the physical world requires learning probabilistic associations between sensory events and their change in time (volatility). Bayesian accounts of this learning process rest on hierarchical prediction errors (PEs) that are weighted by estimates of uncertainty (or its inverse, precision). In a previous fMRI study we found that low-level precision-weighted PEs about visual outcomes (that update beliefs about associations) activated the putative dopaminergic midbrain; by contrast, precision-weighted PEs about cue-outcome associations (that update beliefs about volatility) activated the cholinergic basal forebrain. These findings suggested selective dopaminergic and cholinergic influences on precision-weighted PEs at different hierarchical levels. Here, we tested this hypothesis, repeating our fMRI study under pharmacological manipulations in healthy participants. Specifically, we performed two pharmacological fMRI studies with a between-subject double-blind placebo-controlled design: study 1 used antagonists of dopaminergic (amisulpride) and muscarinic (biperiden) receptors, study 2 used enhancing drugs of dopaminergic (levodopa) and cholinergic (galantamine) modulation. Pooled across all pharmacological conditions of study 1 and study 2, respectively, we found that low-level precision-weighted PEs activated the midbrain and high-level precision-weighted PEs the basal forebrain as in our previous study. However, we found pharmacological effects on brain activity associated with these computational quantities only when splitting the precision-weighted PEs into their PE and precision components: in a brainstem region putatively containing cholinergic (pedunculopontine and laterodorsal tegmental) nuclei, biperiden (compared to placebo) enhanced low-level PE responses and attenuated high-level PE activity, while amisulpride reduced high-level PE responses. Additionally, in the putative dopaminergic midbrain, galantamine compared to placebo enhanced low-level PE responses (in a body-weight dependent manner) and amisulpride enhanced high-level precision activity. Task behaviour was not affected by any of the drugs. These results do not support our hypothesis of a clear-cut dichotomy between different hierarchical inference levels and neurotransmitter systems, but suggest a more complex interaction between these neuromodulatory systems and hierarchical Bayesian quantities. However, our present results may have been affected by confounds inherent to pharmacological fMRI. We discuss these confounds and outline improved experimental tests for the future
The nucleon and mesons effective masses in the Relativistic Mean-Field Theory
Nucleon and meson effective masses in the nonlinear Relativistic Mean - Field
Theory (RMF) introducing a nonlinear omega - rho and sigma coupling motivated
by the Quark Meson Coupling model (QMC) is explored. It is shown that, in
contrast to the usual Walecka model, not only the effective nucleon mass
m_{eff,N} but also the effective sigma, rho meson masses (m_{eff, sigma},
m_{eff, rho}) and the effective omega meson mass m_{eff, omega} are nucleon
density dependent.Comment: 11 pages, iop latex2e, 7 colour figures, revised version of
nucl-th/0011084, accepted to Journal of Physics G: Nuclear and Particle,
presented on "Mesons & Light Nuclei '01", Prague, June 200
The extended, relativistic hyperon star model
In this paper an equation of state of neutron star matter which includes
strange baryons in the framework of Zimanyi and Moszkowski (ZM) model has been
obtained. We concentrate on the effects of the isospin dependence of the
equation of state constructing for the appropriate choices of parameters the
hyperons star model. Numerous neutron star models show that the appearance of
hyperons is connected with the increasing density in neutron star interiors.
Various studies have indicated that the inclusion of delta meson mainly affects
the symmetry energy and through this the chemical composition of a neutron
star. As the effective nucleon mass contributes to hadron chemical potentials
it alters the chemical composition of the star. In the result the obtained
model of the star not only excludes large population of hadrons but also does
not reduce significantly lepton contents in the star interior.Comment: 22 pages, revtex4, 13 figure
A Prospective Pilot Study to Identify a Myocarditis Cohort who may Safely Resume Sports Activities 3 Months after Diagnosis
International cardiovascular society recommendations to return to sports activities following acute myocarditis are based on expert consensus in the absence of prospective studies. We prospectively enrolled 30 patients with newly diagnosed myocarditis based on clinical parameters, laboratory measurements and cardiac magnetic resonance imaging with mildly reduced or pre served left ventricular ejection fraction (LVEF) with a follow-up of 12 months. Cessation of physical activity was recommended for 3 months. The average age was 35 (19–80) years with 73% male patients. One case of non-sustained ventricular tachycardia was recorded during 48-h-Holter electrocardiogram. Except for this case, all patients were allowed to resume physical exercise after 3 months. At 6- (n = 26) and 12-month (n = 19) follow-up neither cardiac events nor worsening LVEF were recorded. The
risk of cardiac events at 1 year after diagnosis of myocarditis appears to be low after resumption of exercise after 3 months among patients who recover from acute myocarditis
Role of electromagnetically induced transparency in resonant four-wave-mixing schemes.
Published versio
Quantum jumps induced by the center-of-mass motion of a trapped atom
We theoretically study the occurrence of quantum jumps in the resonance
fluorescence of a trapped atom. Here, the atom is laser cooled in a
configuration of level such that the occurrence of a quantum jump is associated
to a change of the vibrational center-of-mass motion by one phonon. The
statistics of the occurrence of the dark fluorescence period is studied as a
function of the physical parameters and the corresponding features in the
spectrum of resonance fluorescence are identified. We discuss the information
which can be extracted on the atomic motion from the observation of a quantum
jump in the considered setup
Thyroid hormone receptor alpha modulates fibrogenesis in hepatic stellate cells
Objective: Progressive hepatic fibrosis can be considered the final stage of chronic liver disease. Hepatic stellate cells (HSC) play a central role in liver fibrogenesis. Thyroid hormones (TH, e.g. thyroxine; T4 and triiodothyronine; T3) significantly affect development, growth, cell differentiation and metabolism through activation of TH receptor α and/or β (TRα/β). Here, we evaluated the influence of TH in hepatic fibrogenesis. Design: Human liver tissue was obtained from explanted livers following transplantation. TRα-deficient (TRα-KO) and wild-type (WT) mice were fed a control or a profibrogenic methionine-choline deficient (MCD) diet. Liver tissue was assessed by qRT-PCR for fibrogenic gene expression. In vitro, HSC were treated with TGFβ in the presence or absence of T3. HSC with stable TRα knockdown and TRα deficient mouse embryonic fibroblasts (MEF) were used to determine receptor-specific function. Activation of HSC and MEF was assessed using the wound healing assay, Western blotting, and qRT-PCR. Results: TRα and TRβ expression is downregulated in the liver during hepatic fibrogenesis in humans and mice. TRα represents the dominant isoform in HSC. In vitro, T3 blunted TGFβ-induced expression of fibrogenic genes in HSC and abrogated wound healing by modulating TGFβ signalling, which depended on TRα presence. In vivo, TRα-KO enhanced MCD diet-induced liver fibrogenesis. Conclusion: These observations indicate that TH action in non-parenchymal cells is highly relevant. The interaction of TRα with TH regulates the phenotype of HSC via the TGFβ signalling pathway. Thus, the TH–TR axis may be a valuable target for future therapy of liver fibrosis.</p
Thermal variational principle and gauge fields
A Feynman-Jensen version of the thermal variational principle is applied to
hot gauge fields, Abelian as well as non-Abelian: scalar electrodynamics
(without scalar self-coupling) and the gluon plasma. The perturbatively known
self-energies are shown to derive by variation from a free quadratic
(''Gaussian'') trial Lagrangian. Independence of the covariant gauge fixing
parameter is reached (within the order studied) after a reformulation of
the partition function such that it depends on only even powers of the gauge
field. Also static properties (Debye screening) are reproduced this way. But
because of the present need to expand the variational functional, the method
falls short of its potential nonperturbative power.Comment: 36 pages, LaTeX, no figures. Updated version: new title, section on
static properties and some references adde
- …