170 research outputs found

    Debris and micrometeorite impact measurements in the laboratory

    Get PDF
    A method was developed to simulate space debris in the laboratory. This method, which is an outgrowth of research in inertial confinement fusion (ICF), uses laser ablation to accelerate material. Using this method, single 60 micron aluminum spheres were accelerated to 15 km/sec and larger 500 micron aluminum spheres were accelerated to 2 km/sec. Also, many small (less than 10 micron diameter) irregularly shaped particles were accelerated to speeds of 100 km/sec

    The influence of strength of hyperon-hyperon interactions on neutron star properties

    Full text link
    An equation of state of neutron star matter with strange baryons has been obtained. The effects of the strength of hyperon-hyperon interactions on the equations of state constructed for the chosen parameter sets have been analyzed. Numerous neutron star models show that the appearance of hyperons is connected with the increasing density in neutron star interiors. The performed calculations have indicated that the change of the hyperon-hyperon coupling constants affects the chemical composition of a neutron star. The obtained numerical hyperon star models exclude large population of strange baryons in the star interior.Comment: 18 pages, 22 figures, accepted to be published in Journal of Physics G: Nuclear and Particle Physic

    Cholinergic and dopaminergic effects on prediction error and uncertainty responses during sensory associative learning

    Get PDF
    Navigating the physical world requires learning probabilistic associations between sensory events and their change in time (volatility). Bayesian accounts of this learning process rest on hierarchical prediction errors (PEs) that are weighted by estimates of uncertainty (or its inverse, precision). In a previous fMRI study we found that low-level precision-weighted PEs about visual outcomes (that update beliefs about associations) activated the putative dopaminergic midbrain; by contrast, precision-weighted PEs about cue-outcome associations (that update beliefs about volatility) activated the cholinergic basal forebrain. These findings suggested selective dopaminergic and cholinergic influences on precision-weighted PEs at different hierarchical levels. Here, we tested this hypothesis, repeating our fMRI study under pharmacological manipulations in healthy participants. Specifically, we performed two pharmacological fMRI studies with a between-subject double-blind placebo-controlled design: study 1 used antagonists of dopaminergic (amisulpride) and muscarinic (biperiden) receptors, study 2 used enhancing drugs of dopaminergic (levodopa) and cholinergic (galantamine) modulation. Pooled across all pharmacological conditions of study 1 and study 2, respectively, we found that low-level precision-weighted PEs activated the midbrain and high-level precision-weighted PEs the basal forebrain as in our previous study. However, we found pharmacological effects on brain activity associated with these computational quantities only when splitting the precision-weighted PEs into their PE and precision components: in a brainstem region putatively containing cholinergic (pedunculopontine and laterodorsal tegmental) nuclei, biperiden (compared to placebo) enhanced low-level PE responses and attenuated high-level PE activity, while amisulpride reduced high-level PE responses. Additionally, in the putative dopaminergic midbrain, galantamine compared to placebo enhanced low-level PE responses (in a body-weight dependent manner) and amisulpride enhanced high-level precision activity. Task behaviour was not affected by any of the drugs. These results do not support our hypothesis of a clear-cut dichotomy between different hierarchical inference levels and neurotransmitter systems, but suggest a more complex interaction between these neuromodulatory systems and hierarchical Bayesian quantities. However, our present results may have been affected by confounds inherent to pharmacological fMRI. We discuss these confounds and outline improved experimental tests for the future

    The nucleon and mesons effective masses in the Relativistic Mean-Field Theory

    Full text link
    Nucleon and meson effective masses in the nonlinear Relativistic Mean - Field Theory (RMF) introducing a nonlinear omega - rho and sigma coupling motivated by the Quark Meson Coupling model (QMC) is explored. It is shown that, in contrast to the usual Walecka model, not only the effective nucleon mass m_{eff,N} but also the effective sigma, rho meson masses (m_{eff, sigma}, m_{eff, rho}) and the effective omega meson mass m_{eff, omega} are nucleon density dependent.Comment: 11 pages, iop latex2e, 7 colour figures, revised version of nucl-th/0011084, accepted to Journal of Physics G: Nuclear and Particle, presented on "Mesons & Light Nuclei '01", Prague, June 200

    The extended, relativistic hyperon star model

    Get PDF
    In this paper an equation of state of neutron star matter which includes strange baryons in the framework of Zimanyi and Moszkowski (ZM) model has been obtained. We concentrate on the effects of the isospin dependence of the equation of state constructing for the appropriate choices of parameters the hyperons star model. Numerous neutron star models show that the appearance of hyperons is connected with the increasing density in neutron star interiors. Various studies have indicated that the inclusion of delta meson mainly affects the symmetry energy and through this the chemical composition of a neutron star. As the effective nucleon mass contributes to hadron chemical potentials it alters the chemical composition of the star. In the result the obtained model of the star not only excludes large population of hadrons but also does not reduce significantly lepton contents in the star interior.Comment: 22 pages, revtex4, 13 figure

    A Prospective Pilot Study to Identify a Myocarditis Cohort who may Safely Resume Sports Activities 3 Months after Diagnosis

    Get PDF
    International cardiovascular society recommendations to return to sports activities following acute myocarditis are based on expert consensus in the absence of prospective studies. We prospectively enrolled 30 patients with newly diagnosed myocarditis based on clinical parameters, laboratory measurements and cardiac magnetic resonance imaging with mildly reduced or pre served left ventricular ejection fraction (LVEF) with a follow-up of 12 months. Cessation of physical activity was recommended for 3 months. The average age was 35 (19–80) years with 73% male patients. One case of non-sustained ventricular tachycardia was recorded during 48-h-Holter electrocardiogram. Except for this case, all patients were allowed to resume physical exercise after 3 months. At 6- (n = 26) and 12-month (n = 19) follow-up neither cardiac events nor worsening LVEF were recorded. The risk of cardiac events at 1 year after diagnosis of myocarditis appears to be low after resumption of exercise after 3 months among patients who recover from acute myocarditis

    Quantum jumps induced by the center-of-mass motion of a trapped atom

    Full text link
    We theoretically study the occurrence of quantum jumps in the resonance fluorescence of a trapped atom. Here, the atom is laser cooled in a configuration of level such that the occurrence of a quantum jump is associated to a change of the vibrational center-of-mass motion by one phonon. The statistics of the occurrence of the dark fluorescence period is studied as a function of the physical parameters and the corresponding features in the spectrum of resonance fluorescence are identified. We discuss the information which can be extracted on the atomic motion from the observation of a quantum jump in the considered setup

    Thyroid hormone receptor alpha modulates fibrogenesis in hepatic stellate cells

    Get PDF
    Objective: Progressive hepatic fibrosis can be considered the final stage of chronic liver disease. Hepatic stellate cells (HSC) play a central role in liver fibrogenesis. Thyroid hormones (TH, e.g. thyroxine; T4 and triiodothyronine; T3) significantly affect development, growth, cell differentiation and metabolism through activation of TH receptor α and/or β (TRα/β). Here, we evaluated the influence of TH in hepatic fibrogenesis. Design: Human liver tissue was obtained from explanted livers following transplantation. TRα-deficient (TRα-KO) and wild-type (WT) mice were fed a control or a profibrogenic methionine-choline deficient (MCD) diet. Liver tissue was assessed by qRT-PCR for fibrogenic gene expression. In vitro, HSC were treated with TGFβ in the presence or absence of T3. HSC with stable TRα knockdown and TRα deficient mouse embryonic fibroblasts (MEF) were used to determine receptor-specific function. Activation of HSC and MEF was assessed using the wound healing assay, Western blotting, and qRT-PCR. Results: TRα and TRβ expression is downregulated in the liver during hepatic fibrogenesis in humans and mice. TRα represents the dominant isoform in HSC. In vitro, T3 blunted TGFβ-induced expression of fibrogenic genes in HSC and abrogated wound healing by modulating TGFβ signalling, which depended on TRα presence. In vivo, TRα-KO enhanced MCD diet-induced liver fibrogenesis. Conclusion: These observations indicate that TH action in non-parenchymal cells is highly relevant. The interaction of TRα with TH regulates the phenotype of HSC via the TGFβ signalling pathway. Thus, the TH–TR axis may be a valuable target for future therapy of liver fibrosis.</p

    Thermal variational principle and gauge fields

    Get PDF
    A Feynman-Jensen version of the thermal variational principle is applied to hot gauge fields, Abelian as well as non-Abelian: scalar electrodynamics (without scalar self-coupling) and the gluon plasma. The perturbatively known self-energies are shown to derive by variation from a free quadratic (''Gaussian'') trial Lagrangian. Independence of the covariant gauge fixing parameter is reached (within the order g3g^3 studied) after a reformulation of the partition function such that it depends on only even powers of the gauge field. Also static properties (Debye screening) are reproduced this way. But because of the present need to expand the variational functional, the method falls short of its potential nonperturbative power.Comment: 36 pages, LaTeX, no figures. Updated version: new title, section on static properties and some references adde
    corecore