26 research outputs found

    Investigation of the Mechanical Properties of Glass Fiber – Chicken Feather Hybrid Composite

    Get PDF
    The production and/or worldwide consumption of chicken at an industrial or domestic level lead to a considerable quantity of chicken feather residue as a waste by-product. Chicken feathers have a possible application in preparing lightweight composites. The use of chicken feathers as a constituent to prepare hybrid composites leads to a solution for disposal of the feathers. In this study, chicken feathers were used as filler material to prepare hybrid composites. Different varieties of composites were prepared by a chicken feather hand-layup technique, and by varying the percentage weight of the chicken feathers. Specimens were prepared and tested according to ASTM standards. The 10 wt. % chicken feather-filled hybrid composites indicated the maximum tensile strength (193 MPa), flexural strength (148 MPa) and impact strength (3.65 Joules). Scanning Electron Microscopy (SEM) analysis was carried out to find the fracture and interfacial characteristics of the composites. The results indicated that, these composites can be used in domestic, automobile and structural applications which carry nominal loads

    Mechanical characterization of heat treated Al2219 hybrid composites

    Get PDF
    Aluminium alloy matrix composites with Al2O3 reinforcements exhibit superior mechanical properties and utilize in several demanding fields’ viz., automobile, aerospace, defense, sports equipment, electronics and bio-medical. The present work emphasizes on improvement of microstructure and mechanical properties of age hardened graphite and alumina reinforced Al alloy matrix hybrid composites. Different composites with a constant carbon content of 1 weight % and 0, 2, 4 and 6 weight % Al2O3 as reinforcements are fabricated by using stir casting technic and tested for hardness, tensile and impact strength. Scanning electron microscopy (SEM) is performed to analyse the failure mode under tensile load. All the composites are subjected to age hardening treatment with solutionising temperature of 530oC and aging temperatures of 100 and 200oC. The peak hardness of the composites at two aging temperatures are noted. Tensile and impact tests are conducted for the peak aged specimens. Results show substantial increase in the hardness of the age hardened specimens in the range of 34-44% in comparison with the as cast specimens. Result analysis shows increase in tensile strength (upto 40%) and decrease in impact resistance (upto 33%) with the increase in weight % of reinforcements. As the aging temperature increases a reduction in tensile strength and impact resistance is observed in each composites

    The Effect of Lean Techniques on Elimination of Waste in Composite Panel Production Using Paired t-test

    No full text
    ‘A penny saved is a penny earned’ as this phrase says it all, the key for increased profit lies in the elimination of non-value adding actions in any production process. This study concentrates mainly on the procedures to identify and to reduce the different types of wastes in a production process. Initially the data related to types of waste and their classification according lean techniques were analyzed and implemented on a production process. The data were recorded for a whole month before implementation and for a whole month after implementation. Later the influence of the lean techniques was analyzed on two different sections of waste, for 5% significance value using paired t-test. It was found that there is a positive impact of lean techniques on some areas of production flow

    The Effect of Lean Techniques on Elimination of Waste in Composite Panel Production Using Paired t-test

    No full text
    ‘A penny saved is a penny earned’ as this phrase says it all, the key for increased profit lies in the elimination of non-value adding actions in any production process. This study concentrates mainly on the procedures to identify and to reduce the different types of wastes in a production process. Initially the data related to types of waste and their classification according lean techniques were analyzed and implemented on a production process. The data were recorded for a whole month before implementation and for a whole month after implementation. Later the influence of the lean techniques was analyzed on two different sections of waste, for 5% significance value using paired t-test. It was found that there is a positive impact of lean techniques on some areas of production flow

    Experimental and numerical investigation of mode II failure behavior evaluation using three point bend, end notched flexure test

    No full text
    In the present paper the primary task is the study involving calculation of elastic properties of the composite from the individual properties of the E-glass fiber (650 GSM) and the properties of resin LY 556 with Hardener HY951. The properties of varying volumetric ratio of fiber are obtained from calculation of the properties by using rule of mixtures. Experimentally validating the theoretical and numerical approaches by comparing the load-displacement response and crack paths observed in large scale bridged crack propagation in laminated fiber-reinforced composites specimens. An effort is being made to develop a numerical framework for cohesive crack propagation and demonstrating its effectiveness by simulating failure through crack propagation in materials with complex microstructure like fiber reinforced composites. Experimentally validating the theoretical and numerical approaches by comparing the load-displacement response and crack paths observed in large scale bridged crack propagation in laminated fiber-reinforced composites specimens

    Design and Analysis of Split Fixture for Gear Hobbing Machine

    No full text
    Compared to the conventional gear hobbing fixtures, split fixture can effectively reduce job set-up time during the manufacturing process. This paper investigates the behaviour and analysis of split fixture under varying static loading conditions. Design of the part was established by considering the ability of the split fixture to carry jobs of various diameters. In order to validate the design, Static structural analysis was carried out on two positional configurations of the split fixture. A load of 1 ton was applied on the resting face of the fixture to simulate the effect of holding the job. The analysis included a study of the Stress, Deformations, and Modal analysis at different resonating frequencies to check for failure of design. By applying varying loads similar to practical conditions, it was observed that the design successfully withstood the applied forces without failure and a factor of safety of 142 was achieved in a critical loading case. Investigating the effect of dynamic loads on the Split Fixture and including auxiliary assembly components in design analysis

    Experimental and numerical investigation of mode II failure behavior evaluation using three point bend, end notched flexure test

    No full text
    In the present paper the primary task is the study involving calculation of elastic properties of the composite from the individual properties of the E-glass fiber (650 GSM) and the properties of resin LY 556 with Hardener HY951. The properties of varying volumetric ratio of fiber are obtained from calculation of the properties by using rule of mixtures. Experimentally validating the theoretical and numerical approaches by comparing the load-displacement response and crack paths observed in large scale bridged crack propagation in laminated fiber-reinforced composites specimens. An effort is being made to develop a numerical framework for cohesive crack propagation and demonstrating its effectiveness by simulating failure through crack propagation in materials with complex microstructure like fiber reinforced composites. Experimentally validating the theoretical and numerical approaches by comparing the load-displacement response and crack paths observed in large scale bridged crack propagation in laminated fiber-reinforced composites specimens

    Durability analysis on properties of water soaked PNNCs and CS-ANN model for wear property analysis of PNNCs

    No full text
    AbstractThe work aims to prepare and characterize polyester nanoclay nanocomposite (PNNCs) with various nanoclay weight percentages (0, 2, and 4). Nanoclay and polyester resin are blended using a mechanical stirrer followed by a sonicator. The blend is molded as specimens as per ASTM standards. The addition of nanoclay improved tensile strength by 12% to 16% and flexural strength by 4% to 10%. After 60 days of soaking in, the tensile strength retention rate of pure PE, 2PNNC, and 4PNNC are 84.9%, 89.8%, and 90.6%, respectively. At the same time, flexural strength retention rates of pure PE, 2PNNC, and 4PNNC are 86.7%, 90.2%, and 91.9%, respectively. SEM images are analyzed to know the reasons for specimen failure under tensile load. ExpDec1 (“One-phase exponential decay function with time constant parameter”) model is used on the experimental data to determine the composite’s durability. The experimental values and data produced by the ExpDec1 model are relatively close to one another. In all specimens, the error percentage of experimental and predicted values during 80 and 100 days of water soaking varies very little (less than 1%). The study proposes CS-ANN (Cuckoo Search-Artificial Neural Network) architecture to predict mass loss. Test results prove that the CS-ANN predicted values are much closer to the experimental results. Cuckoo Search Algorithm (CSA) is used along with the ANN model to optimize and fine-tune the hyperparameters according to the data. The loss curves substantially prove the proposed model to be the best fit for the experimental data

    Design and Analysis of Split Fixture for Gear Hobbing Machine

    No full text
    Compared to the conventional gear hobbing fixtures, split fixture can effectively reduce job set-up time during the manufacturing process. This paper investigates the behaviour and analysis of split fixture under varying static loading conditions. Design of the part was established by considering the ability of the split fixture to carry jobs of various diameters. In order to validate the design, Static structural analysis was carried out on two positional configurations of the split fixture. A load of 1 ton was applied on the resting face of the fixture to simulate the effect of holding the job. The analysis included a study of the Stress, Deformations, and Modal analysis at different resonating frequencies to check for failure of design. By applying varying loads similar to practical conditions, it was observed that the design successfully withstood the applied forces without failure and a factor of safety of 142 was achieved in a critical loading case. Investigating the effect of dynamic loads on the Split Fixture and including auxiliary assembly components in design analysis

    Design and Analysis of Split Fixture for Gear Hobbing Machine

    No full text
    Compared to the conventional gear hobbing fixtures, split fixture can effectively reduce job set-up time during the manufacturing process. This paper investigates the behaviour and analysis of split fixture under varying static loading conditions. Design of the part was established by considering the ability of the split fixture to carry jobs of various diameters. In order to validate the design, Static structural analysis was carried out on two positional configurations of the split fixture. A load of 1 ton was applied on the resting face of the fixture to simulate the effect of holding the job. The analysis included a study of the Stress, Deformations, and Modal analysis at different resonating frequencies to check for failure of design. By applying varying loads similar to practical conditions, it was observed that the design successfully withstood the applied forces without failure and a factor of safety of 142 was achieved in a critical loading case. Investigating the effect of dynamic loads on the Split Fixture and including auxiliary assembly components in design analysis
    corecore