89 research outputs found
Characterization of Secretory Sphingomyelinase Activity, Lipoprotein Sphingolipid Content and LDL Aggregation in ldlr-/- Mice Fed on a High-Fat Diet
The propensity of LDLs (low-density lipoproteins) for aggregation and/or oxidation has been linked to their sphingolipid content, specifically the levels of SM (sphingomyelin) and ceramide. To investigate this association in vivo, ldlr (LDL receptor)-null mice (ldlr-/-) were fed on a modified (atherogenic) diet containing saturated fats and cholesterol. The diet led to significantly elevated SM content in all serum lipoproteins. In contrast, ceramide increased only in the LDL particles. MS-based analyses of the lipid acyl chain composition revealed a marked elevation in C16:0 fatty acid in SM and ceramide, consistent with the prevalence of palmitic acid in the modified diet. The diet also led to increased activity of the S-SMase [secretory SMase (sphingomyelinase)], a protein that is generated by ASMase (acid SMase) and acts on serum LDL. An increased macrophage secretion seemed to be responsible for the elevated S-SMase activity. ASMase-deficient mice (asm-/-/ldlr-/-) lacked S-SMase activity and were protected from diet-induced elevation in LDL ceramide. LDL from asm-/-/ldlr-/- mice fed on the modified diet were less aggregated and oxidized than LDL from asm+/+/ldlr-/- mice. When tested in vitro, the propensity for aggregation was dependent on the SM level: only LDL from animals on modified diet that have high SM content aggregated when treated with recombinant S-SMase. In conclusion, LDL-SM content and S-SMase activity are up-regulated in mice fed on an atherogenic diet. S-SMase mediates diet-induced changes in LDL ceramide content and aggregation. S-SMase effectiveness in inducing aggregation is dependent on diet-induced enrichment of LDL with SM, possibly through increased hepatic synthesis
Synergistic Effect of Anemia and Red Blood Cells Transfusion on Inflammation and Lung Injury
Anemia and resultant red blood cell transfusion may be associated with adverse long-term clinical outcomes. To investigate the mechanism(s) responsible, we profiled inflammatory biomarkers and circulating levels of the bioactive lysophospholipid mediator sphingosine-1-phosphate (S1P) in control and anemic mice with or without LPS-induced systemic inflammation. Acute anemia or lipopolysaccharide (LPS) challenge alone triggered an increase of circulating levels of the inflammatory markers IL-6 and keratinocyte-derived chemokine (CXCL1/KC). Moreover, administration of LPS to anemic mice reduced circulating S1P levels and augmented lung injury and pulmonary vascular permeability. Transfusion of aged, but not fresh, red blood cells (RBCs) worsened pulmonary vascular leak. S1P levels decline markedly during storage of mouse RBCs. Loading stored murine RBCs with S1P prior to transfusion partially attenuated anemia-associated acute pulmonary vascular leak. Taken together, our results indicate that anemia and systemic inflammation can alter the S1P buffering capacity of RBCs, suggesting possible strategies for alleviating transfusion-related lung injury in clinical practice
Synthesis and Characterization of Thermoresponsive Hydrogels Based on \u3cem\u3eN\u3c/em\u3e-Isopropylacrylamide Crosslinked with 4,4′-Dihydroxybiphenyl Diacrylate
A novel crosslinker [4,4′-dihydroxybiphenyl diacrylate (44BDA)] was developed, and a series of temperature-responsive hydrogels were synthesized through free radical polymerization of N-isopropylacrylamide (NIPAAm) with 44BDA. The temperature-responsive behavior of the resulting gels was characterized by swelling studies, and the lower critical solution temperature (LCST) of the hydrogels was characterized through differential scanning calorimetry. Increased content of 44BDA led to a decreased swelling ratio and shifted the LCST to lower temperatures. These novel hydrogels also displayed resiliency through multiple swelling–deswelling cycles, and their temperature responsiveness was reversible. The successful synthesis of NIPAAm-based hydrogels crosslinked with 44BDA has led to a new class of temperature-responsive hydrogel systems with a variety of potential applications
Bisphenol A Increases Atherosclerosis in Pregnane X Receptor-Humanized ApoE Deficient Mice
BACKGROUND: Bisphenol A (BPA) is a base chemical used extensively in many consumer products. BPA has recently been associated with increased risk of cardiovascular disease (CVD) in multiple large-scale human population studies, but the underlying mechanisms remain elusive. We previously reported that BPA activates the pregnane X receptor (PXR), which acts as a xenobiotic sensor to regulate xenobiotic metabolism and has pro-atherogenic effects in animal models upon activation. Interestingly, BPA is a potent agonist of human PXR but does not activate mouse or rat PXR signaling, which confounds the use of rodent models to evaluate mechanisms of BPA-mediated CVD risk. This study aimed to investigate the atherogenic mechanism of BPA using a PXR-humanized mouse model.
METHODS AND RESULTS: A PXR-humanized ApoE deficient (huPXR•ApoE-/-) mouse line was generated that respond to human PXR ligands and feeding studies were performed to determine the effects of BPA exposure on atherosclerosis development. Exposure to BPA significantly increased atherosclerotic lesion area in the aortic root and brachiocephalic artery of huPXR•ApoE-/- mice by 104% (P\u3c0.001) and 120% (P\u3c0.05), respectively. By contrast, BPA did not affect atherosclerosis development in the control littermates without human PXR. BPA exposure did not affect plasma lipid levels but increased CD36 expression and lipid accumulation in macrophages of huPXR•ApoE−/− mice.
CONCLUSION: These findings identify a molecular mechanism that could link BPA exposure to increased risk of CVD in exposed individuals. PXR is therefore a relevant target for future risk assessment of BPA and related environmental chemicals in humans
The P2Y(12) antagonists, 2MeSAMP and cangrelor, inhibit platelet activation through P2Y(12)/G(i)-dependent mechanism
BACKGROUND: ADP is an important physiological agonist that induces integrin activation and platelet aggregation through its receptors P2Y(1) (Gα(q)-coupled) and P2Y(12) (Gα(i)-coupled). P2Y(12) plays a critical role in platelet activation and thrombosis. Adenosine-based P2Y(12) antagonists, 2-methylthioadenosine 5\u27-monophosphate triethylammonium salt hydrate (2MeSAMP) and Cangrelor (AR-C69931MX) have been widely used to demonstrate the role of P2Y(12) in platelet function. Cangrelor is being evaluated in clinical trials of thrombotic diseases. However, a recent study reported that both 2MeSAMP and Cangrelor raise intra-platelet cAMP levels and inhibit platelet aggregation through a P2Y(12)-independent mechanism.
METHODOLOGY/PRINCIPAL FINDINGS: The present work, using P2Y(12) deficient mice, sought to clarify previous conflicting reports and to elucidate the mechanisms by which 2MeSAMP and Cangrelor inhibit platelet activation and thrombosis. 2MeSAMP and Cangrelor inhibited aggregation and ATP release of wild-type but not P2Y(12) deficient platelets. 2MeSAMP and Cangrelor neither raised intracellular cAMP concentrations nor induced phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in washed human or mouse platelets. Furthermore, unlike the activators (PGI(2) and forskolin) of the cAMP pathway, 2MeSAMP and Cangrelor failed to inhibit Ca(2+) mobilization, Akt phosphorylation, and Rap1b activation in P2Y(12) deficient platelets. Importantly, while injection of Cangrelor inhibited thrombus formation in a FeCl(3)-induced thrombosis model in wild-type mice, it failed to affect thrombus formation in P2Y(12) deficient mice.
CONCLUSIONS: These data together demonstrate that 2MeSAMP and Cangrelor inhibit platelet function through the P2Y(12)-dependent mechanism both in vitro and in vivo
Expression of LPP3 in Bergmann glia is required for proper cerebellar sphingosine-1-phosphate metabolism/signaling and development
Bioactive lipids serve as intracellular and extracellular mediators in cell signaling in normal and pathological conditions. Here we describe that an important regulator of some of these lipids, the lipid phosphate phosphatase-3 (LPP3), is abundantly expressed in specific plasma membrane domains of Bergmann glia (BG), a specialized type of astrocyte with key roles in cerebellum development and physiology. Mice selectively lacking expression of LPP3/Ppap2b in the nervous system are viable and fertile but exhibit defects in postnatal cerebellum development and modifications in the cytoarchitecture and arrangement of BG with a mild non-progressive motor coordination defect. Lipid and gene profiling studies in combination with pharmacological treatments suggest that most of these effects are associated with alterations in sphingosine-1- phosphate (S1P) metabolism and signaling. Altogether our data indicate that LPP3 participates in several aspects of neuron-glia communication required for proper cerebellum developmen
Effects of Adipocyte Aryl Hydrocarbon Receptor Deficiency on PCB-Induced Disruption of Glucose Homeostasis in Lean and Obese Mice
BACKGROUND: Coplanar polychlorinated biphenyls (PCBs) promote adipocyte inflammation and impair glucose homeostasis in lean mice. The diabetes-promoting effects of lipophilic PCBs have been observed only during weight loss in obese mice. The molecular mechanisms linking PCB exposures to impaired glucose metabolism are unclear.
OBJECTIVES: In this study we tested the hypothesis that coplanar PCBs act at adipocyte aryl hydrocarbon receptors (AhRs) to promote adipose inflammation and impair glucose homeostasis in lean mice and in obese mice during weight loss.
METHODS AND RESULTS: PCB-77 administration impaired glucose and insulin tolerance in LF (low fat diet)-fed control (AhRfl/fl) mice but not in adipocyte AhR-deficient mice (AhRAdQ). Unexpectedly, AhRAdQ mice exhibited increased fat mass when fed a standard LF or high fat (HF) diet. In mice fed a HF diet, both genotypes became obese, but AhRAdQ mice administered vehicle (VEH) exhibited increased body weight, adipose mass, adipose inflammation, and impaired glucose tolerance compared with AhRfl/fl controls. Impairment of glucose homeostasis in response to PCB-77 was not observed in obese mice of either genotype. However, upon weight loss, AhRfl/fl mice administered PCB-77 exhibited increased abundance of adipose tumor necrosis factor-α (TNF-α) mRNA and impaired glucose homeostasis compared with those administered VEH. In contrast, PCB-77 had no effect on TNF-α or glucose homeostasis in AhRAdQ mice exhibiting weight loss.
CONCLUSIONS: Our results demonstrate that adipocyte AhR mediates PCB-induced adipose inflammation and impairment of glucose homeostasis in mice. Moreover, deficiency of AhR in adipocytes augmented the development of obesity, indicating that endogenous ligand(s) for AhR regulate adipose homeostasis
Herbimycins D-F, Ansamycin Analogues from \u3cem\u3eStreptomyces\u3c/em\u3e sp. RM-7-15
Bacterial strains belonging to the class actinomycetes were isolated from the soil near a thermal vent of the Ruth Mullins coal fire (Appalachian mountains of Eastern Kentucky). High resolution electrospray ionization mass spectrometry (HR-ESI-MS) and ultraviolet (UV) absorption profiles of metabolites from one of the isolates (Streptomyces sp. RM-7-15) revealed the presence of a unique set of metabolites ultimately determined to be herbimycins D-F (1–3). In addition, herbimycin A (4), dihydroherbimycin A (TAN 420E) (7), and the structurally distinct antibiotic bicycylomycin were isolated from the crude extract of Streptomyces sp. RM-7-15. Herbimycins A, D-F (1–3) displayed comparable binding affinities to the Hsp90α. While the new analogues were found to be inactive in cancer cell cytotoxicity and antimicrobial assays, they may offer new insights in the context of non-toxic ansamycin-based Hsp90 inhibitors for the treatment of neurodegenerative disease
The Native Production of the Sesquiterpene Isopterocarpolone by \u3cem\u3eStreptomyces\u3c/em\u3e sp. RM-14-6
We report the production, isolation and structure elucidation of the sesquiterpene isopterocarpolone from an Appalachian isolate Streptomyces species RM-14-6. While isopterocarpolone was previously put forth as a putative plant metabolite, this study highlights the first native bacterial production of isopterocarpolone and the first full characterisation of isopterocarpolone using 1D and 2D NMR spectroscopy and HR-ESI mass spectrometry. Considering the biosynthesis of closely related metabolites (geosmin or 5-epiaristolochene), the structure of isopterocarpolone also suggests the potential participation of one or more unique enzymatic transformations. In this context, this work also sets the stage for the elucidation of potentially novel bacterial biosynthetic machinery
Increasing Adipocyte Lipoprotein Lipase Improves Glucose Metabolism in High Fat Diet-Induced Obesity
Lipid accumulation in liver and skeletal muscle contributes to co-morbidities associated with diabetes and obesity. We made a transgenic mouse in which the adiponectin (Adipoq) promoter drives expression of lipoprotein lipase (LPL) in adipocytes to potentially increase adipose tissue lipid storage. These mice (Adipoq-LPL) have improved glucose and insulin tolerance as well as increased energy expenditure when challenged with a high fat diet (HFD). To identify the mechanism(s) involved, we determined whether the Adipoq-LPL mice diverted dietary lipid to adipose tissue to reduce peripheral lipotoxicity, but we found no evidence for this. Instead, characterization of the adipose tissue of the male mice after HFD challenge revealed that the mRNA levels of peroxisome proliferator-activated receptor-γ (PPARγ) and a number of PPARγ-regulated genes were higher in the epididymal fat pads of Adipoq-LPL mice than control mice. This included adiponectin, whose mRNA levels were increased, leading to increased adiponectin serum levels in the Adipoq-LPL mice. In many respects, the adipose phenotype of these animals resembles thiazolidinedione treatment except for one important difference, the Adipoq-LPL mice did not gain more fat mass on HFD than control mice and did not have increased expression of genes in adipose such as glycerol kinase, which are induced by high affinity PPAR agonists. Rather, there was selective induction of PPARγ-regulated genes such as adiponectin in the adipose of the Adipoq-LPL mice, suggesting that increasing adipose tissue LPL improves glucose metabolism in diet-induced obesity by improving the adipose tissue phenotype. Adipoq-LPL mice also have increased energy expenditure
- …