13 research outputs found

    Estrogen-induced hypomethylation and overexpression of <i>YAP1 </i>facilitate breast cancer cell growth and survival

    Get PDF
    Increased expression of Yes-associated protein-1 (YAP1) was shown to correlate with reduced survival in breast cancer (BC) patients. However, the exact mechanism of YAP1 regulation in BC cells remains ambiguous. Genomic sequence search showed that the promoter region of the YAP1 gene contains CpG Islands, hence the likelihood of epigenetic regulation by DNA methylation. To address this possibility, the effect of estrogen (17β estradiol; E2) on YAP1 gene expression and YAP1 promoter methylation status was evaluated in BC cells. The functional consequences of E2 treatment in control and YAP1-silenced BC cells were also investigated. Our data showed that E2 modulates YAP1 expression by hypomethylation of its promoter region via downregulation of DNA methyltransferase 3B (DNMT3B); an effect that seems to facilitate tumor progression in BC cells. Although the effect of E2 on YAP1 expression was estrogen receptor (ER) dependent, E2 treatment also upregulated YAP1 expression in MDA-MB231 and SKBR3 cells, which are known ER-negative BC cell lines but expresses ERα. Functionally, E2 treatment resulted in increased cell proliferation, decreased apoptosis, cell cycle arrest, and autophagic flux in MCF7 cells. The knockdown of the YAP1 gene reversed these carcinogenic effects of E2 and inhibited E2-induced autophagy. Lastly, we showed that YAP1 is highly expressed and hypomethylated in human BC tissues and that increased YAP1 expression correlates negatively with DNMT3B expression but strongly associated with ER expression. Our data provide the basis for considering screening of YAP1 expression and its promoter methylation status in the diagnosis and prognosis of BC.</p

    Molecular pathogenicity of 1-nonadecene and l-lactic acid, unique metabolites in radicular cysts and periapical granulomas

    Get PDF
    Recently, 1-nonadecene and l-lactic acid were identified as unique metabolites in radicular cysts and periapical granuloma, respectively. However, the biological roles of these metabolites were unknown. Therefore, we aimed to investigate the inflammatory and mesenchymal-epithelial transition (MET) effects of 1-nonadecene, and the inflammatory and collagen precipitation effects of l-lactic acid on both periodontal ligament fibroblasts (PdLFs) and peripheral blood mononuclear cells (PBMCs). PdLFs and PBMCs were treated with 1-nonadecene and l-lactic acid. Cytokines’ expression was measured using quantitative real-time polymerase chain reaction (qRT-PCR). E-cadherin, N-cadherin, and macrophage polarization markers were measured using flow cytometry. The collagen, matrix metalloproteinase (MMP)-1, and released cytokines were measured using collagen assay, western blot, and Luminex assay, respectively. In PdLFs, 1-nonadecene enhances inflammation through the upregulation of some inflammatory cytokines including IL-1β, IL-6, IL-12A, monocyte chemoattractant protein (MCP)-1, and platelet-derived growth factor (PDGF) α. 1-Nonadecene also induced MET through the upregulation of E-cadherin and the downregulation of N-cadherin in PdLFs. 1-Nonadecene polarized macrophages to a pro-inflammatory phenotype and suppressed their cytokines’ release. l-lactic acid exerted a differential impact on the inflammation and proliferation markers. Intriguingly, l-lactic acid induced fibrosis-like effects by enhancing collagen synthesis, while inhibiting MMP-1 release in PdLFs. These results provide a deeper understanding of 1-nonadecene and l-lactic acid’s roles in modulating the microenvironment of the periapical area. Consequently, further clinical investigation can be employed for target therapy

    Titanium Particles Modulate Lymphocyte and Macrophage Polarization in Peri-Implant Gingival Tissues

    Get PDF
    Titanium dental implants are one of the modalities to replace missing teeth. The release of titanium particles from the implant’s surface may modulate the immune cells, resulting in implant failure. However, little is known about the immune microenvironment that plays a role in peri-implant inflammation as a consequence of titanium particles. In this study, the peri-implant gingival tissues were collected from patients with failed implants, successful implants and no implants, and then a whole transcriptome analysis was performed. The gene set enrichment analysis confirmed that macrophage M1/M2 polarization and lymphocyte proliferation were differentially expressed between the study groups. The functional clustering and pathway analysis of the differentially expressed genes between the failed implants and successful implants versus no implants revealed that the immune response pathways were the most common in both comparisons, implying the critical role of infiltrating immune cells in the peri-implant tissues. The H&E and IHC staining confirmed the presence of titanium particles and immune cells in the tissue samples, with an increase in the infiltration of lymphocytes and macrophages in the failed implant samples. The in vitro validation showed a significant increase in the level of IL-1β, IL-8 and IL-18 expression by macrophages. Our findings showed evidence that titanium particles modulate lymphocyte and macrophage polarization in peri-implant gingival tissues, which can help in the understanding of the imbalance in osteoblast–osteoclast activity and failure of dental implant osseointegration

    Azithromycin Differentially Alters TCR-Activated Helper T Cell Subset Phenotype and Effector Function

    Get PDF
    In addition to their antibiotic activities, azithromycin (AZM) exhibits anti-inflammatory effects in various respiratory diseases. One of the potent anti-inflammatory mechanisms is through inhibition of CD4+ helper T (Th) cell effector function. However, their impact on specific Th subset is obscure. Herein, we demonstrate the cellular basis of phenotypic and functional alterations associated with Th subsets following AZM treatment in vitro. Using well-characterized Th subset specific chemokine receptors, we report significant suppression of T cell receptor (TCR)-stimulated hyperactivated CCR4+CXCR3+ (Th0) expansion compared to CCR4-CXCR3+ (Th1-like) and CCR4+CXCR3- (Th2-like) cells. Interestingly, this effect was associated with diminished cell proliferation. Furthermore, AZM significantly inhibited the inflammatory cytokines IFN-Îł and IL-4 production, CCR4 and CXCR3 receptor expression, and viability of Th0, Th1-like, and Th2-like subsets. Our findings suggest that AZM differentially affects TCR-activated Th subsets phenotype and function, and CCR4 and CXCR3 downregulation and suppressed Th0 subset expansion could potentially influence their trafficking and differentiation into cytokine-producing effector cells

    Corrigendum to “Comprehensive in-silico analysis of chaperones identifies CRYAB and P4HA2 as potential therapeutic targets and their small molecular inhibitors for the treatment of Cholangiocarcinoma” [Comput. Biol. Med. 166 (2023) 107572]

    No full text
    The authors regret that in the initial publication of this study, typographical errors were identified in Figs. 1 and 2. In Fig. 1D, pie chart the number of non-upregulated genes has to be corrected to 202, and the corresponding percentage has to be adjusted to “91.82 %". Similarly, in Result Section 3.3, the total count of chaperones was mistyped as 200, it should be corrected to 220, in lines 4 and 8. The Venn diagram's Fig. 2B had 144 incorrectly labelled; it must be corrected to 114. The authors would like to apologise for any inconvenience caused.[Formula</p

    Comprehensive <i>In silico</i> analysis of chaperones identifies CRYAB and P4HA2 as potential therapeutic targets and their small-molecule inhibitors for the treatment of cholangiocarcinoma

    No full text
    Cholangiocarcinoma (CCA) is a subtype of liver cancer with increasing incidence, poor prognosis, and limited treatment modalities. It is, therefore, imperative to identify novel therapeutic targets for better management of the disease. Chaperones are known to be significant regulators of carcinogenesis, however, their role in CCA remains unclear. This study aims to screen chaperones involved in CCA pathogenesis and identify drugs targeting key chaperones to improve the therapeutic response to the disease. To achieve this, first we mined the literature to create an atlas of human chaperone proteins. Next, their expression in CCA was determined by publicly available datasets of patients at mRNA and protein levels. In addition, our analysis involving protein–protein interaction and pathway analysis of eight key dysregulated chaperones revealed that they control crucial cancer-related pathways. Furthermore, topology analysis of the CCA network identified crystallin alpha-B protein (CRYAB) and prolyl-4-hydroxylase subunit 2 (P4HA2) as novel therapeutic targets for the disease. Finally, drug repurposing of 286 clinically approved anti-cancer drugs against these two chaperones performed by molecular docking and molecular dynamics simulations showed that tucatinib and regorafenib had a modulatory effect on them and could be potential inhibitors of CRYAB and P4HA2, respectively. Overall, our study, for the first time, provides insights into the pan-chaperone expression in CCA and explains the pathways that might drive CCA pathogenesis. Further, our identification of potential therapeutic targets and their inhibitors could provide new and complementary approaches to CCA treatment.</p

    Antimicrobial Activity of Biogenic Metal Oxide Nanoparticles and Their Synergistic Effect on Clinical Pathogens

    No full text
    The rising prevalence of antibiotic-resistance is currently a grave issue; hence, novel antimicrobial agents are being explored and developed to address infections resulting from multiple drug-resistant pathogens. Biogenic CuO, ZnO, and WO3 nanoparticles can be considered as such agents. Clinical isolates of E. coli, S. aureus, methicillin-resistant S. aureus (MRSA), and Candida albicans from oral and vaginal samples were treated with single and combination metal nanoparticles incubated under dark and light conditions to understand the synergistic effect of the nanoparticles and their photocatalytic antimicrobial activity. Biogenic CuO and ZnO nanoparticles exhibited significant antimicrobial effects under dark incubation which did not alter on photoactivation. However, photoactivated WO3 nanoparticles significantly reduced the number of viable cells by 75% for all the test organisms, thus proving to be a promising antimicrobial agent. Combinations of CuO, ZnO, and WO3 nanoparticles demonstrated synergistic action as a significant increase in their antimicrobial property (>90%) was observed compared to the action of single elemental nanoparticles. The mechanism of the antimicrobial action of metal nanoparticles both in combination and in isolation was assessed with respect to lipid peroxidation due to ROS (reactive oxygen species) generation by measuring malondialdehyde (MDA) production, and the damage to cell integrity using live/dead staining and quantitating with the use of flow cytometry and fluorescence microscopy

    Comprehensive <i>In silico</i> analysis of chaperones identifies CRYAB and P4HA2 as potential therapeutic targets and their small-molecule inhibitors for the treatment of cholangiocarcinoma

    No full text
    Cholangiocarcinoma (CCA) is a subtype of liver cancer with increasing incidence, poor prognosis, and limited treatment modalities. It is, therefore, imperative to identify novel therapeutic targets for better management of the disease. Chaperones are known to be significant regulators of carcinogenesis, however, their role in CCA remains unclear. This study aims to screen chaperones involved in CCA pathogenesis and identify drugs targeting key chaperones to improve the therapeutic response to the disease. To achieve this, first we mined the literature to create an atlas of human chaperone proteins. Next, their expression in CCA was determined by publicly available datasets of patients at mRNA and protein levels. In addition, our analysis involving protein–protein interaction and pathway analysis of eight key dysregulated chaperones revealed that they control crucial cancer-related pathways. Furthermore, topology analysis of the CCA network identified crystallin alpha-B protein (CRYAB) and prolyl-4-hydroxylase subunit 2 (P4HA2) as novel therapeutic targets for the disease. Finally, drug repurposing of 286 clinically approved anti-cancer drugs against these two chaperones performed by molecular docking and molecular dynamics simulations showed that tucatinib and regorafenib had a modulatory effect on them and could be potential inhibitors of CRYAB and P4HA2, respectively. Overall, our study, for the first time, provides insights into the pan-chaperone expression in CCA and explains the pathways that might drive CCA pathogenesis. Further, our identification of potential therapeutic targets and their inhibitors could provide new and complementary approaches to CCA treatment.</p

    DNA methylation-mediated epigenetic regulation of oncogenic RPS2 as a novel therapeutic target and biomarker in hepatocellular carcinoma

    No full text
    Ribosomal Protein S2 (RPS2) has emerged as a potential prognostic biomarker due to its involvement in key cellular processes and its altered expression pattern in certain types of cancer. However, its role in hepatocellular carcinoma (HCC) has yet to be investigated. Herein, we analyzed RPS2 mRNA expression and promoter methylation in HCC patient samples and HepG2 cells. Subsequently, loss-of-function experiments were conducted to determine the function of RPS2 in HCC cells in vitro. Our results revealed that RPS2 mRNA expression is significantly elevated, and its promoter is hypomethylated in HCC patient samples compared to controls. In addition, 5-Azacytidine treatment in HepG2 cells decreased RPS2 promoter methylation level and increased its mRNA expression. RPS2 knockdown in HepG2 cells suppressed cell proliferation and promoted apoptosis. Functional pathway analysis of genes positively and negatively associated with RPS2 expression in HCC showed enrichment in ribosomal biogenesis, translation machinery, cell cycle regulation, and DNA processing. Furthermore, utilizing drug-protein 3D docking, we found that doxorubicin, sorafenib, and 5-Fluorouracil, showed high affinity to the active sites of RPS2, and in vitro treatment with these drugs reduced RPS2 expression. For the first time, we report on DNA methylation-mediated epigenetic regulation of RPS2 and its oncogenic role in HCC. Our findings suggest that RPS2 plays a significant role in the development and progression of HCC, hence its potential prognostic and therapeutic utility. Moreover, as epigenetic changes happen early in cancer development, RPS2 may serve as a potential biomarker for tumor progression.</p
    corecore