29 research outputs found

    Forming efficient agent groups for completing complex tasks

    No full text
    In this paper we produce complexity and impossibility results and develop algorithms for a task allocation problem that needs to be solved by a group of autonomous agents working together. In particular, each task is assumed to be composed of several subtasks and involves an associated predetermined and known overall payment (set by the task’s owner) for its completion. However, the division of this payment among the corresponding contributors is not predefined. Now to accomplish a particular task, all its subtasks need to be allocated to agents with the necessary capabilities and the agents’ corresponding costs need to fall within the preset overall task payment. For this scenario, we first provide a cooperative agent system designer with a practical solution that achieves an efficient allocation. However, this solution is not applicable for non-cooperative settings. Consequently, we go on to provide a detailed analysis where we prove that certain design goals cannot be achieved if the agents are self interested. Specifically, we prove that for the general case, no protocol achieving the efficient solution can exist that is individually rational and budget balanced. We show that although efficient protocols may exist in some settings, these will inevitably be setting-specific

    Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.)

    Get PDF
    Leaf rust and stripe rust are devastating wheat diseases, causing significant yield losses in many regions of the world. The use of resistant varieties is the most efficient way to protect wheat crops from these diseases. Sharon goatgrass (Aegilops sharonensis or AES), which is a diploid wild relative of wheat, exhibits a high frequency of leaf and stripe rust resistance. We used the resistant AES accession TH548 and induced homoeologous recombination by the ph1b allele to obtain resistant wheat recombinant lines carrying AES chromosome segments in the genetic background of the spring wheat cultivar Galil. The gametocidal effect from AES was overcome by using an “anti-gametocidal” wheat mutant. These recombinant lines were found resistant to highly virulent races of the leaf and stripe rust pathogens in Israel and the United States. Molecular DArT analysis of the different recombinant lines revealed different lengths of AES segments on wheat chromosome 6B, which indicates the location of both resistance genes

    Solving coalitional resource games

    Get PDF
    Coalitional Resource Games (crgs) are a form of Non-Transferable Utility (ntu) game, which provide a natural formal framework for modelling scenarios in which agents must pool scarce resources in order to achieve mutually satisfying sets of goals. Although a number of computational questions surrounding crgs have been studied, there has to date been no attempt to develop solution concepts for crgs, or techniques for constructing solutions. In this paper, we rectify this omission. Following a review of the crg framework and a discussion of related work, we formalise notions of coalition structures and the core for crgs, and investigate the complexity of questions such as determining nonemptiness of the core. We show that, while such questions are in general computationally hard, it is possible to check the stability of a coalition structure in time exponential in the number of goals in the system, but polynomial in the number of agents and resources. As a consequence, checking stability is feasible for systems with small or bounded numbers of goals. We then consider constructive approaches to generating coalition structures. We present a negotiation protocol for crgs, give an associated negotiation strategy, and prove that this strategy forms a subgame perfect equilibrium. We then show that coalition structures produced by the protocol satisfy several desirable properties: Pareto optimality, dummy player, and pseudo-symmetry. © 2009 Elsevier B.V. All rights reserved

    Verifying Team Formation Protocols with Probabilistic Model Checking

    No full text
    Abstract. Multi-agent systems are an increasingly important software paradigm and in many of its applications agents cooperate to achieve a particular goal. This requires the design of efficient collaboration protocols, a typical example of which is team formation. In this paper, we illustrate how probabilistic model checking, a technique for formal verification of probabilistic systems, can be applied to the analysis, design and verification of such protocols. We start by analysing the performance of an existing team formation protocol modelled as a discrete-time Markov chain. Then, using a Markov decision process model, we construct optimal algorithms for team formation. Finally, we use stochastic two-player games to analyse the competitive coalitional setting, in which agents are split into cooperative and hostile classes. We present experimental results from these models using the probabilistic model checking tool PRISM, which we have extended with support for stochastic games.
    corecore