6 research outputs found

    Morphological Phase Separation in Unstable Thin Films: Pattern Formation and Growth

    Full text link
    We present results from a comprehensive numerical study of {\it morphological phase separation} (MPS) in unstable thin liquid films on a 2-dimensional substrate. We study the quantitative properties of the evolution morphology via several experimentally relevant markers, e.g., correlation function, structure factor, domain-size and defect-size probability distributions, and growth laws. Our results suggest that the late-stage morphologies exhibit dynamical scaling, and their evolution is self-similar in time. We emphasize the analogies and differences between MPS in films and segregation kinetics in unstable binary mixtures.Comment: 17 pages, 6 figures; Accepted for publication in Physical Chemistry Chemical Physic

    Simulation-based fluid-thermal analysis of power transformers

    Get PDF
    The transformer life and performance strongly depend on winding hot-spot temperature (HST). Various alternative techniques for HST prediction are gaining popularity over the conventional direct-measurement methods. In this context, the application of Computational Fluid Dynamics (CFD) based thermal models is particularly interesting because of their accurate assessment, higher precision and low cost. Besides, it can remarkably evaluate and improve the design efficiency of transformer without overshooting the capital cost. In the present work, a comprehensive understanding of CFD-based fluid-thermal assessment is attempted to encourage the readers to review transformer thermal models. It is also expected that these attempts will progressively assist in correlating various economical and operational parameters of transformer manufacturing and asset management

    Spinodal Phase Separation in Liquid Films with Quenched Disorder

    Full text link
    We study spinodal phase separation in unstable thin liquid films on chemically disordered substrates via simulations of the thin-film equation. The disorder is characterized by immobile patches of varying size and Hamaker constant. The effect of disorder is pronounced in the early stages (amplification of fluctuations), remains during the intermediate stages and vanishes in the late stages (domain growth). These findings are in contrast to the well-known effects of quenched disorder in usual phase-separation processes, viz., the early stages remain undisturbed and domain growth is slowed down in the asymptotic regime. We also address the inverse problem of estimating disorder by thin-film experiments.Comment: 12 pages, 7 figure

    Kinetics of Spinodal Phase Separation in Unstable Thin Liquid Films

    Get PDF
    We study universality in the kinetics of spinodal phase separation in unstable thin liquid films, via simulations of the thin film equation. It is shown that in addition to morphology and free energy,the number density of local maxima in the film profile can also be used to identify the early, intermediate and late stages of spinodal phase separation. A universal curve between the number density of local maxima and rescaled time describes the kinetics of early stage in d = 2, 3. The Lifshitz-Slyozov exponent of -1/3 describes the kinetics of the late stage in d = 2 even in the absence of coexisting equilibrium phases.Comment: 5 figure

    Simulation-based fluid-thermal analysis of power transformers

    Get PDF
    The transformer life and performance strongly depend on winding hot-spot temperature (HST). Various alternative techniques for HST prediction are gaining popularity over the conventional direct-measurement methods. In this context, the application of Computational Fluid Dynamics (CFD) based thermal models is particularly interesting because of their accurate assessment, higher precision and low cost. Besides, it can remarkably evaluate and improve the design efficiency of transformer without overshooting the capital cost. In the present work, a comprehensive understanding of CFD-based fluid-thermal assessment is attempted to encourage the readers to review transformer thermal models. It is also expected that these attempts will progressively assist in correlating various economical and operational parameters of transformer manufacturing and asset management

    Amplification of Fluctuations in Unstable Systems with Disorder

    Full text link
    We study the early-stage kinetics of thermodynamically unstable systems with quenched disorder. We show analytically that the growth of initial fluctuations is amplified by the presence of disorder. This is confirmed by numerical simulations of morphological phase separation (MPS) in thin liquid films and spinodal decomposition (SD) in binary mixtures. We also discuss the experimental implications of our results.Comment: 15 pages, 4 figure
    corecore