106 research outputs found

    Omecamtiv mecarbil in precision-cut living heart failure slices: A story of a double-edged sword

    Get PDF
    Heart failure (HF) is a rapidly growing pandemic while medical treatment options remain limited. Omecamtiv mecarbil (OM) is a novel HF drug that directly targets the myosin heads of the cardiac muscle. This study used living myocardial slices (LMS) from patients with HF to evaluate the direct biomechanical effects of OM as compared to dobutamine. LMS were produced from patients with end-stage HF undergoing cardiac transplantation or left ventricular assist device implantation and cultured under electromechanical stimulation (diastolic preload: ca. 1 mN, stimulation frequency: 0.5 Hz). Dobutamine and omecamtiv mecarbil (OM) were administered on consecutive days and biomechanical effects were continuously recorded with dedicated force transducers. OM and dobutamine significantly increased contractile force to a similar maximum force, but OM also increased median time-to-peak with 48 % (p = 0.046) and time-to-relaxation with 68 % (p = 0.045). OM administration led to impaired relaxation of HF LMS with increasing stimulation frequencies, which was not observed with dobutamine. Furthermore, the functional refractory period was significantly shorter after administration of OM compared to dobutamine (235 ms (200–265) vs. 270 ms (259–283), p = 0.035). In conclusion, OM increased contractile force and systolic duration of HF LMS, indicating an improvement in cardiac function and normalization of systolic time intervals in patients with HF. Conversely, OM slowed relaxation, which could lead to diastolic filling abnormalities. As such, OM showed benefits on systolic function on one hand but potential hindrances of diastolic function on the other hand

    Omecamtiv mecarbil in precision-cut living heart failure slices: A story of a double-edged sword

    Get PDF
    Heart failure (HF) is a rapidly growing pandemic while medical treatment options remain limited. Omecamtiv mecarbil (OM) is a novel HF drug that directly targets the myosin heads of the cardiac muscle. This study used living myocardial slices (LMS) from patients with HF to evaluate the direct biomechanical effects of OM as compared to dobutamine. LMS were produced from patients with end-stage HF undergoing cardiac transplantation or left ventricular assist device implantation and cultured under electromechanical stimulation (diastolic preload: ca. 1 mN, stimulation frequency: 0.5 Hz). Dobutamine and omecamtiv mecarbil (OM) were administered on consecutive days and biomechanical effects were continuously recorded with dedicated force transducers. OM and dobutamine significantly increased contractile force to a similar maximum force, but OM also increased median time-to-peak with 48 % (p = 0.046) and time-to-relaxation with 68 % (p = 0.045). OM administration led to impaired relaxation of HF LMS with increasing stimulation frequencies, which was not observed with dobutamine. Furthermore, the functional refractory period was significantly shorter after administration of OM compared to dobutamine (235 ms (200–265) vs. 270 ms (259–283), p = 0.035). In conclusion, OM increased contractile force and systolic duration of HF LMS, indicating an improvement in cardiac function and normalization of systolic time intervals in patients with HF. Conversely, OM slowed relaxation, which could lead to diastolic filling abnormalities. As such, OM showed benefits on systolic function on one hand but potential hindrances of diastolic function on the other hand

    Preclinical Models of Cardiac Disease:A Comprehensive Overview for Clinical Scientists

    Get PDF
    For recent decades, cardiac diseases have been the leading cause of death and morbidity worldwide. Despite significant achievements in their management, profound understanding of disease progression is limited. The lack of biologically relevant and robust preclinical disease models that truly grasp the molecular underpinnings of cardiac disease and its pathophysiology attributes to this stagnation, as well as the insufficiency of platforms that effectively explore novel therapeutic avenues. The area of fundamental and translational cardiac research has therefore gained wide interest of scientists in the clinical field, while the landscape has rapidly evolved towards an elaborate array of research modalities, characterized by diverse and distinctive traits. As a consequence, current literature lacks an intelligible and complete overview aimed at clinical scientists that focuses on selecting the optimal platform for translational research questions. In this review, we present an elaborate overview of current in vitro, ex vivo, in vivo and in silico platforms that model cardiac health and disease, delineating their main benefits and drawbacks, innovative prospects, and foremost fields of application in the scope of clinical research incentives.</p

    Acute Biomechanical Effects of Empagliflozin on Living Isolated Human Heart Failure Myocardium

    Get PDF
    Purpose: Multiple randomized controlled trials have presented SGLT2 inhibitors (SGLT2i) as novel pharmacological therapy for patients with heart failure, resulting in reductions in hospitalization for heart failure and mortality. Given the absence of SGLT2 receptors in the heart, mechanisms of direct cardioprotective effects of SGLT2i are complex and remain to be investigated. In this study, we evaluated the direct biomechanical effects of SGLT2i empagliflozin on isolated myocardium from end-stage heart failure patients. Methods: Ventricular tissue biopsies obtained from 7 patients undergoing heart transplantation or ventricular assist device implantation surgery were cut into 27 living myocardial slices (LMS) and mounted in custom-made cultivation chambers with mechanical preload and electrical stimulation, resulting in cardiac contractions. These 300 µm thick LMS were subjected to 10 µM empagliflozin and with continuous recording of biomechanical parameters. Results: Empagliflozin did not affect the maximum contraction force of the slices, however, increased total contraction duration by 13% (p = 0.002) which was determined by prolonged time to peak and time to relaxation (p = 0.009 and p = 0.003, respectively). Conclusion: The addition of empagliflozin to LMS from end-stage heart failure patients cultured in a biomimetic system improves contraction and relaxation kinetics by increasing total contraction duration without diminishing maximum force production. Therefore, we present convincing evidence that SGLT2i can directly act on the myocardium in absence of systemic influences from other organ systems.</p

    The HF-AF ENERGY Trial:Nicotinamide Riboside for the Treatment of Atrial Fibrillation in Heart Failure Patients

    Get PDF
    Background: The presence of atrial fibrillation (AF) in heart failure (HF) patients with reduced ejection fraction is common and associated with an increased risk of stroke, hospitalization and mortality. Recent research findings indicate that a reduction in nicotinamide adenine dinucleotide (NAD+) levels results in mitochondrial dysfunction, DNA damage and consequently cardiomyocyte impairment in experimental and clinical HF and AF. The HF-AF ENERGY trial aims to investigate the cardioprotective effects of the NAD+ precursor nicotinamide riboside (NR) treatment in ischemic heart disease patients diagnosed with AF. Study design: The HF-AF ENERGY trial is a prospective intervention study. The study consists of a (retrospective) 4 months observation period and a 4 months intervention period. The cardioprotective effect of NR on AF burden is investigated by remote monitoring software of implantable cardiac defibrillators (ICDs), which enables continuous atrial rhythm monitoring detection. Cardiac dimension and function are examined by echocardiography. Laboratory blood analysis is performed to determine mitochondrial function markers and energy metabolism. All the study parameters are assessed at two fixed time points (pre- and post-treatment). Pre- and post-treatment outcomes are compared to determine the effects of NR treatment on AF burden, mitochondrial function markers and energy metabolism. Conclusion: The HF-AF ENERGY trial investigates the cardioprotective effects of NR on AF burden and whether NR normalizes blood-based mitochondrial function markers and energy metabolites of the NAD metabolome in ischemic heart disease patients diagnosed with AF. The study outcomes elucidate whether NAD+ metabolism can be used as a future therapy for HF patients with AF.</p

    Oral Glucose Tolerance Test for the Screening of Glucose Intolerance Long Term Post‐Heart Transplantation

    Get PDF
    Post-transplant diabetes mellitus (PTDM) is a frequent complication post-heart transplantation (HT), however long-term prevalence studies are missing. The aim of this study was to determine the prevalence and determinants of PTDM as well as prediabetes long-term post-HT using oral glucose tolerance tests (OGTT). Also, the additional value of OGTT compared to fasting glucose and glycated hemoglobin (HbA1c) was investigated. All patients > 1 year post-HT seen at the outpatient clinic between August 2018 and April 2021 were screened with an OGTT. Patients with known diabetes, an active infection/rejection/malignancy or patients unwilling or unable to undergo OGTT were excluded. In total, 263 patients were screened, 108 were excluded. The included 155 patients had a median age of 54.3 [42.2–64.3] years, and 63 (41%) were female. Median time since HT was 8.5 [4.8–14.5] years. Overall, 51 (33%) had a normal range, 85 (55%) had a prediabetes range and 19 (12%) had a PTDM range test. OGTT identified prediabetes and PTDM in more patients (18% and 50%, respectively), than fasting glucose levels and HbA1c. Age at HT (OR 1.03 (1.00–1.06), p = 0.044) was a significant determinant of an abnormal OGTT. Prediabetes as well as PTDM are frequently seen long-term post-HT. OGTT is the preferred screening method

    Pectus Excavatum and Risk of Right Ventricular Failure in Left Ventricular Assist Device Patients

    Get PDF
    Background: Right ventricular failure (RVF) is a significant cause of morbidity and mortality in patients with a left ventricular assist device (LVAD). This study is aimed to investigate the influence of a pectus excavatum on early and late outcomes, specifically RVF, following LVAD implantation. Methods: A retrospective study was performed, that included patients with a HeartMate 3 LVAD at our tertiary referral center. The Haller index (HI) was calculated using computed tomography (CT) scan to evaluate the chest-wall dimensions. Results: In total, 80 patients (median age 57 years) were included. Two cohorts were identified: 28 patients (35%) with a normal chest wall (HI &lt;2.0) and 52 patients (65%) with pectus excavatum (HI 2.0-3.2), with a mean follow-up time of 28 months. Early (&lt;30 days) RVF and early acute kidney injury events did not differ between cohorts. Overall survival did not differ between cohorts with a hazard ratio (HR) of 0.47 (95% confidence interval (CI): 0.19-1.19, p = 0.113). Late (&gt;30 days) recurrent readmission for RVF occurred more often in patients with pectus excavatum (p = 0.008). The onset of late RVF started around 18 months after implantation and increased thereafter in the overall study cohort.Conclusions: Pectus excavatum is observed frequently in patients with a LVAD implantation. These patients have an increased rate of readmissions and late RVF. Further investigation is required to explore the extent and severity of chest-wall abnormalities on the risk of RVF.</p
    corecore