62 research outputs found
Transport study of Berry's phase, the resistivity rule, and quantum Hall effect in graphite
Transport measurements indicate strong oscillations in the Hall-,,
and the diagonal-, , resistances and exhibit Hall plateaus at the
lowest temperatures, in three-dimensional Highly Oriented Pyrolytic Graphite
(HOPG). At the same time, a comparative Shubnikov-de Haas-oscillations-based
Berry's phase analysis indicates that graphite is unlike the GaAs/AlGaAs 2D
electron system, the 3D n-GaAs epilayer, semiconducting ,
and some other systems. Finally, we observe the transport data to follow
. This feature is consistent with
the observed relative phases of the oscillatory and .Comment: 5 pages, 4 figure
Magneto-transport Characteristics of a 2D Electron System Driven to Negative Magneto-conductivity by Microwave Photoexcitation
Negative diagonal magneto-conductivity/resistivity is a spectacular- and thought provoking-property of driven, far-from-equilibrium, low dimensional electronic systems. The physical response of this exotic electronic state is not yet fully understood since it is rarely encountered in experiment. The microwave-radiation-induced zero-resistance state in the high mobility GaAs/AlGaAs 2D electron system is believed to be an example where negative magneto-conductivity/resistivity is responsible for the observed phenomena. Here, we examine the magneto-transport characteristics of this negative conductivity/ resistivity state in the microwave photo-excited two-dimensional electron system (2DES) through a numerical solution of the associated boundary value problem. The results suggest, surprisingly, that a bare negative diagonal conductivity/resistivity state in the 2DES under photo-excitation should yield a positive diagonal resistance, with a concomitant sign reversal in the Hall voltage
Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation
A comparative study of the radiation-induced magnetoresistance oscillations
in the high mobility GaAs/AlGaAs heterostructure two dimensional electron
system (2DES) under linearly- and circularlypolarized microwave excitation
indicates a profound difference in the response observed upon rotating the
microwave launcher for the two cases, although circularly polarized microwave
radiation induced magnetoresistance oscillations observed at low magnetic
fields are similar to the oscillations observed with linearly polarized
radiation. For the linearly polarized radiation, the magnetoresistive response
is a strong sinusoidal function of the launcher rotation (or linear
polarization) angle, {\theta}. For circularly polarized radiation, the
oscillatory magnetoresistive response is hardly sensitive to {\theta}
Size-dependent Giant-magnetoresistance in Millimeter Scale GaAs/AlGaAs 2D Electron Devices
Large changes in the electrical resistance induced by the application of a small magnetic field are potentially useful for device-applications. Such Giant Magneto-Resistance (GMR) effects also provide new insights into the physical phenomena involved in the associated electronic transport. This study examines a ‘‘bell-shape’’ negative GMR that grows inmagnitude with decreasing temperatures inmm-wide devices fabricated from the high-mobility GaAs/AlGaAs 2-Dimensional Electron System (2DES). Experiments show that the span of this magnetoresistance on the magnetic-field-axis increases with decreasing device width, W, while there is no concurrent Hall resistance, Rxy, correction. A multi-conduction model, including negative diagonalconductivity, and non-vanishing off-diagonal conductivity, reproduces experimental observations. The results suggest that a size effect in the mm-wide 2DES with mm-scale electron mean-free-paths is responsible for the observed ‘‘non-ohmic’’ size-dependent negative GMR
Observation of Resistively Detected Hole Spin Resonance and Zero-Field Pseudo-Spin Splitting in Epitaxial Graphene
Electronic carriers in graphene show a high carrier mobility at room temperature. Thus, this system is widely viewed as a potential future charge-based high-speed electronic material to complement–or replace–silicon. At the same time, the spin properties of graphene have suggested improved capability for spin-based electronics or spintronics and spin-based quantum computing. As a result, the detection, characterization and transport of spin have become topics of interest in graphene. Here we report a microwave photo-excited transport study of monolayer and trilayer graphene that reveals an unexpectedly strong microwave-induced electrical response and dual microwave-induced resonances in the dc resistance. The results suggest the resistive detection of spin resonance, and provide a measurement of the g-factor, the spin relaxation time and the sub-lattice degeneracy splitting at zero magnetic field
The Preterm Clinical Network (PCN) Database: a web-based systematic method of collecting data on the care of women at risk of preterm birth
Background: Despite much research effort, there is a paucity of conclusive evidence in the field of preterm birth prediction and prevention. The methods of monitoring and prevention strategies offered to women at risk vary considerably around the UK and depend on local maternity care provision. It is becoming increasingly recognised that this experience and knowledge, if captured on a larger scale, could be a utilized as a valuable source of evidence for others. The UK Preterm Clinical Network (UKPCN) was established with the aim of improving care and outcomes for women at risk of preterm birth through the sharing of a wealth of experience and knowledge, as well as the building of clinical and research collaboration. The design and development of a bespoke internet-based database was fundamental to achieving this aim.
Method: Following consultation with UKPCN members and agreement on a minimal dataset, the Preterm Clinical Network (PCN) Database was constructed to collect data from women at risk of preterm birth and their children. Information Governance and research ethics committee approval was given for the storage of historical as well as prospectively collected data. Collaborating centres have instant access to their own records, while use of pooled data is governed by the PCN Database Access Committee. Applications are welcomed from UKPCN members and other established research groups. The results of investigations using the data are expected to provide insights into the effectiveness of current surveillance practices and preterm birth interventions on a national and international scale, as well as the generation of ideas for innovation and research. To date, 31 sites are registered as Data Collection Centres, four of which are outside the UK.
Conclusion: This paper outlines the aims of the PCN Database along with the development process undertaken from the initial idea to live launch
Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021
Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
Comparative study of microwave radiation-induced magneto-resistance oscillations induced by circularly- and linearly- polarized microwaves
A systematic comparative study of radiation-induced magneto-resistance oscillations using circularly polarized- and linearly polarized microwaves was carried out on the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES). The results showed that, the sinusoidal sensitivity in the amplitude of the radiation-induced magnetoresistance oscillations observed under launcher rotation for linearly polarized microwaves, is remarkably absent in the similar experiment carried out with circularly polarized microwaves.ISSN:1742-6588ISSN:1742-659
- …