5 research outputs found

    Evaluation of human acellular dermis versus porcine acellular dermis in an in vivo model for incisional hernia repair

    Get PDF
    Incisional hernias commonly occur following abdominal wall surgery. Human acellular dermal matrices (HADM) are widely used in abdominal wall defect repair. Xenograft acellular dermal matrices, particularly those made from porcine tissues (PADM), have recently experienced increased usage. The purpose of this study was to compare the effectiveness of HADM and PADM in the repair of incisional abdominal wall hernias in a rabbit model. A review from earlier work of differences between human allograft acellular dermal matrices (HADM) and porcine xenograft acellular dermal matrices (PADM) demonstrated significant differences (P < 0.05) in mechanical properties: Tensile strength 15.7 MPa vs. 7.7 MPa for HADM and PADM, respectively. Cellular (fibroblast) infiltration was significantly greater for HADM vs. PADM (Armour). The HADM exhibited a more natural, less degraded collagen by electrophoresis as compared to PADM. The rabbit model surgically established an incisional hernia, which was repaired with one of the two acellular dermal matrices 3 weeks after the creation of the abdominal hernia. The animals were euthanized at 4 and 20 weeks and the wounds evaluated. Tissue ingrowth into the implant was significantly faster for the HADM as compared to PADM, 54 vs. 16% at 4 weeks, and 58 vs. 20% for HADM and PADM, respectively at 20 weeks. The original, induced hernia defect (6 cm2) was healed to a greater extent for HADM vs. PADM: 2.7 cm2 unremodeled area for PADM vs. 1.0 cm² for HADM at 20 weeks. The inherent uniformity of tissue ingrowth and remodeling over time was very different for the HADM relative to the PADM. No differences were observed at the 4-week end point. However, the 20-week data exhibited a statistically different level of variability in the remodeling rate with the mean standard deviation of 0.96 for HADM as contrasted to a mean standard deviation of 2.69 for PADM. This was significant with P < 0.05 using a one tail F test for the inherent variability of the standard deviation. No significant differences between the PADM and HADM for adhesion, inflammation, fibrous tissue or neovascularization were noted

    Synthesis and Characterization of Broccoli-like Ag/Cu<sub>2</sub>O Nanostructures on ZnO Nanowires Using the Plasma–Liquid Interaction Method

    No full text
    We have designed an excellent visible-light-driven and high-performance photocatalyst with a Ag-Cu2O-ZnO nanowire heterostructure in our work by combining the hydrothermal approach with plasma–liquid technology. The structural and morphological characteristics and optical properties of the samples were evaluated using X-ray diffraction, field-emission scanning electron microscopy, and spectrophotometry, respectively. The results show that the Ag nanoparticles are mainly positioned on the Cu2O nanoclusters compared with the ZnO nanowire surface, forming broccoli-like Ag-Cu2O nanoclusters during the Ar gas plasma treatment process in an aqueous solution. The diameter of the Ag/Cu2O nanoclusters ranges from 150 to 180 nm. The Ag-Cu2O-ZnO nanowires exhibited improved photocatalytic performance, decomposing approximately 98% methyl orange dye in 30 min. This is a consequence of the synergistic interactions between the p-n heterojunction formed at the Cu2O-ZnO interfaces and the localized surface plasmon resonance (LSPR) effect of the Ag nanoparticles, which broaden the visible light absorption range and effectively separate the photogenerated charge carriers
    corecore