328 research outputs found

    Application of computational physics within Northrop

    Get PDF
    An overview of Northrop programs in computational physics is presented. These programs depend on access to today's supercomputers, such as the Numerical Aerodynamical Simulator (NAS), and future growth on the continuing evolution of computational engines. Descriptions here are concentrated on the following areas: computational fluid dynamics (CFD), computational electromagnetics (CEM), computer architectures, and expert systems. Current efforts and future directions in these areas are presented. The impact of advances in the CFD area is described, and parallels are drawn to analagous developments in CEM. The relationship between advances in these areas and the development of advances (parallel) architectures and expert systems is also presented

    A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (Part I - Protection via specific pathways).

    Get PDF
    Neurocognitive deficits are a major source of morbidity in survivors of cardiac arrest. Treatment options that could be implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation to improve these neurological deficits are limited. We conducted a literature review of treatment protocols designed to evaluate neurologic outcome and survival following cardiac arrest with associated global cerebral ischemia. The search was limited to investigational therapies that were utilized to treat global cerebral ischemia associated with cardiac arrest. In this review we discuss potential mechanisms of neurologic protection following cardiac arrest including actions of several medical gases such as xenon, argon, and nitric oxide. The 3 included mechanisms are: 1. Modulation of neuronal cell death; 2. Alteration of oxygen free radicals; and 3. Improving cerebral hemodynamics. Only a few approaches have been evaluated in limited fashion in cardiac arrest patients and results show inconclusive neuroprotective effects. Future research focusing on combined neuroprotective strategies that target multiple pathways are compelling in the setting of global brain ischemia resulting from cardiac arrest

    Combination therapy for severe portopulmonary hypertension in a child allows for liver transplantation

    Get PDF
    Severe PPHTN is a contraindication to liver transplantation and predicts an abysmal 5‐year outcome. It is defined as a resting mPAP >45 mm Hg with a mean pulmonary artery wedge pressure of 3 wood units in the setting of portal hypertension. There have been limited reports of successful treatment of PPHTN leading to successful liver transplantation in adults, and one reported use of monotherapy as a bridge to successful liver transplant in pediatrics. To our knowledge, we describe the first use of combination therapy as a successful bridge to liver transplantation in a pediatric patient with severe PPHTN. This report adds to the paucity of data in pediatrics on the use of pulmonary vasodilator therapy in patients with severe PPHTN as a bridge to successful liver transplantation. Early diagnosis in order to mitigate or avoid the development of irreversible pulmonary vasculopathy that would preclude candidacy for liver transplantation is crucial, but our report demonstrates that combination therapy can be administered safely, quickly, and may allow for successful liver transplantation in patients with severe PPHTN

    Post-extubation Dysphagia in Liver Transplant Patients

    Get PDF
    Presented as a poster at Indiana Society of Anesthesiologists Annual Meeting 2020

    Metabolomic Characterization of Human Model of Liver Rejection Identifies Aberrancies Linked to Cyclooxygenase (COX) and Nitric Oxide Synthase (NOS)

    Get PDF
    BACKGROUND Acute liver rejection (ALR), a significant complication of liver transplantation, burdens patients, healthcare payers, and the healthcare providers due to an increase in morbidity, cost, and resources. Despite clinical resolution, ALR is associated with an increased risk of graft loss. A unique protocol of delayed immunosuppression used in our institute provided a model to characterize metabolomic profiles in human ALR. MATERIAL AND METHODS Twenty liver allograft biopsies obtained 48 hours after liver transplantation in the absence of immunosuppression were studied. Hepatic metabolites were quantitated in these biopsies by liquid chromatography and mass spectroscopy (LC/MS). Metabolite profiles were compared among: 1) biopsies with reperfusion injury but no histological evidence of rejection (n=7), 2) biopsies with histological evidence of moderate or severe rejection (n=5), and 3) biopsies with histological evidence of mild rejection (n=8). RESULTS There were 133 metabolites consistently detected by LC/MS and these were prioritized using variable importance to projection (VIP) analysis, comparing moderate or severe rejection vs. no rejection or mild rejection using partial least squares discriminant statistical analysis (PLS-DA). Twenty metabolites were identified as progressively different. Further PLS-DA using these metabolites identified 3 metabolites (linoleic acid, γ-linolenic acid, and citrulline) which are associated with either cyclooxygenase or nitric oxide synthase functionality. CONCLUSIONS Hepatic metabolic aberrancies associated with cyclooxygenase and nitric oxide synthase function occur contemporaneous with ALR. Additional studies are required to better characterize the role of these metabolic pathways to enhance utility of the metabolomics approach in diagnosis and outcomes of ALR

    Donation After Circulatory Arrest in Pancreas Transplantation: A Report of 10 Cases

    Get PDF
    Introduction Transplantation of pancreas allografts procured from donation after circulatory death (DCD) remains uncommon. This study reviews a series of pancreas transplants at a single center to assess the donor and recipient characteristics for DCD pancreas transplant and to compare clinical outcomes. Methods DCD procurement was performed with a 5-minute wait time from pronouncement of death to first incision. In 2 patients, tissue plasminogen activator was infused as a thrombolytic during the donor flush. All kidney grafts were placed on pulsatile perfusion. Results There were 606 deceased donor pancreas transplants, 596 standard donors and 10 DCD donors. Of the 10 DCD transplants, 6 were simultaneous pancreas-kidney and 4 were pancreas transplant alone. The average time from incision to aortic cannulation was less than 3 minutes. The median total ischemia time for the DCD grafts was 5.4 hours, compared with 8.0 hours for standard donors (P = .15). Median length of hospital stay was 7 days for both groups, and there were no episode of acute cellular rejection in the first year post-transplant for the DCD group (4.2 % for standard group, P = .65). There was no difference in early or late graft survival, with 100% graft survival in the DCD group up to 1 year post-transplant. Ten-year Kaplan-Meier analysis shows similar graft survival for the 2 groups (P = .92). Conclusions These results support the routine use of carefully selected DCD pancreas donors. There were no differences in graft function, postoperative complications, and early and late graft survival

    Human T Cell Rapamycin Resistance And Th1/Tc1 Polarization Augment Xenogeneic Graft-Versus-Host Disease

    Get PDF

    Influence of Fuel Injection System and Engine-Timing Adjustments on Regulated Emissions from Four Biodiesel Fuels

    Get PDF
    The use of biofuels for transportation has grown substantially in the past decade in response to federal mandates and increased concern about the use of petroleum fuels. As biofuels become more common, it is imperative to assess their influence on mobile source emissions of regulated and hazardous pollutants. This assessment cannot be done without first obtaining a basic understanding of how biofuels affect the relationship between fuel properties, engine design, and combustion conditions. Combustion studies were conducted on biodiesel fuels from four feedstocks (palm oil, soybean oil, canola oil, and coconut oil) with two injection systems, mechanical and electronic. For the electronic system, fuel injection timing was adjusted to compensate for physical changes caused by different fuels. The emissions of nitrogen oxides (NOx) and partial combustion products were compared across both engine injection systems. The analysis showed differences in NOx emissions based on hydrocarbon chain length and degree of fuel unsaturation, with little to no NOx increase compared with ultra-low sulfur diesel fuel for most conditions. Adjusting the fuel injection timing provided some improvement in biodiesel emissions for NOx and particulate matter, particularly at lower engine loads. The results indicated that the introduction of biodiesel and biodiesel blends could have widely dissimilar effects in different types of vehicle fleets, depending on typical engine design, age, and the feedstock used for biofuel production

    Host genotype-specific microbiota do not influence the susceptibility of D. magna to a bacterial pathogen

    Get PDF
    Host-associated microbiota have been claimed to play a role in hosts' responses to parasitic infections, often protecting the hosts from infection. We tested for such a role in the crustacean Daphnia and the parasitic bacterium Pasteuria ramosa, a widely used model system for host-parasite interactions. We first determined the infection phenotype (i.e., resistotype) of eight clonal D. magna genotypes against four strains of P. ramosa by attachment test, followed by 16 S rDNA amplicon sequencing to determine if their genotype or their parasite resistotype influences the composition of their microbiome. We then reciprocally transplanted the microbiota of two host genotypes with opposite resistotypes to four P. ramosa isolates, followed by a reassessment of their resistotype after transplantation. We found significant differences in microbiome composition and structure between Daphnia genotypes and between Daphnia resistotypes to specific P. ramosa strains. Reciprocal microbiota exchange or making the Daphnia hosts bacteria-free, however, did not influence the resistotypes of the hosts. Thus, in contrary to what has been observed in some taxa, our results suggest that D. magna susceptibility to P. ramosa is strongly dictated by the genetic differences of the hosts and is still dependent on Daphnia's first line of immune defense against the esophageal attachment of P. ramosa, which appears to be uninfluenced by the host's microbiota

    A Review of Basic Energy Reconstruction Techniques in Liquid Xenon and Argon Detectors for Dark Matter and Neutrino Physics Using NEST

    Full text link
    Detectors based upon the noble elements, especially liquid xenon as well as liquid argon, as both single- and dual-phase types, require reconstruction of the energies of interacting particles, both in the field of direct detection of dark matter (Weakly Interacting Massive Particles or WIMPs, axions, etc.) and in neutrino physics. Experimentalists, as well as theorists who reanalyze/reinterpret experimental data, have used a few different techniques over the past few decades. In this paper, we review techniques based on solely the primary scintillation channel, the ionization or secondary channel available at non-zero drift electric fields, and combined techniques that include a simple linear combination and weighted averages, with a brief discussion of the applications of profile likelihood, maximum likelihood, and machine learning. Comparing results for electron recoils (beta and gamma interactions) and nuclear recoils (primarily from neutrons) from the Noble Element Simulation Technique (NEST) simulation to available data, we confirm that combining all available information generates higher-precision means, lower widths (energy resolution), and more symmetric shapes (approximately Gaussian) especially at keV-scale energies, with the symmetry even greater when thresholding is addressed. Near thresholds, bias from upward fluctuations matters. For MeV-GeV scales, if only one channel is utilized, an ionization-only-based energy scale outperforms scintillation; channel combination remains beneficial. We discuss here what major collaborations use.Comment: 42 Pages, 2 Tables, 11 Figures, 13 Equation
    corecore