20 research outputs found

    The Gleason Grading System: An Overview

    No full text

    Neisseria Species Identification Assay for the Confirmation of Neisseria gonorrhoeae-Positive Results of the COBAS Amplicor PCR

    No full text
    Screening assays for Neisseria gonorrhoeae exhibit low positive predictive values, particularly in low-prevalence populations. A new real-time PCR assay that detects and identifies individual Neisseria spp. using melt curve analysis was compared to two previously published supplementary assays. NsppID, a 16S rRNA real-time PCR/melt curve assay developed to distinguish N. gonorrhoeae from other Neisseria spp., was compared to real-time PCR assays targeting genes reportedly specific for N. gonorrhoeae, the cppB gene and the porA pseudogene. A total of 408 clinical specimens (324 female endocervical swabs and 84 male urine or urogenital swab specimens) were screened using the COBAS Amplicor assay for Chlamydia trachomatis and N. gonorrhoeae (CT/NG) (Roche Diagnostics, Indianapolis, IN) followed by confirmatory testing via real-time PCR. The NsppID assay detected Neisseria spp. in 150/181 COBAS-positive specimens (82%), including six dual infections, and identified N. gonorrhoeae in 102 (56%) specimens. Sixty-nine of 181 (38%) specimens were positive for N. gonorrhoeae by porA pseudogene, and 115/181 (64%) were positive for cppB. However, cppB was also positive in 15% of COBAS-negative specimens, more than either NsppID (4%) or porA pseudogene (2%) assays. The porA pseudogene assay had the highest specificity for both genders but the lowest sensitivity, especially in female specimens. NsppID had a slightly lower specificity but greater sensitivity and overall accuracy. The least desirable confirmatory assay was cppB, due to poor specificity. The NsppID assay is an accurate confirmatory assay for N. gonorrhoeae detection. In addition, the NsppID assay can identify the non-N. gonorrhoeae species responsible for the majority of false-positive results from the COBAS Amplicor CT/NG assay

    Species-Level Identification of Staphylococcal Isolates by Real-Time PCR and Melt Curve Analysis

    No full text
    A real-time PCR assay was developed to identify common staphylococcal species. A single set of consensus primers was designed to amplify a portion of the 16S rRNA gene, and a pair of fluorescence resonance energy transfer probes was used to identify species based on the unique melt properties of the probes resulting from sequence variations in the amplicons from each species. Nine common staphylococcal strains (S. aureus, S. capitis, S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, S. schleiferi, S. simulans, and S. warneri) were used for assay development. The species-specific melting profiles were validated by correctly identifying 36 of 37 coagulase-negative staphylococcal (CoNS) isolates identified by ribotyping. In a study of clinical isolates, the PCR/melt curve approach correctly identified 56/56 S. aureus isolates identified by coagulase/protein A latex agglutination. Fifty-four CoNS clinical isolates characterized using the API Staph assay were studied, with the PCR/melt curve approach yielding matching identifications for 32/54 (59%). The API Staph assay was unable to identify 18 CoNS isolates, and differing results were obtained for 4 isolates. Sequencing of the 22 discrepant or unidentified CoNS samples revealed that the PCR/melt curve results were correct for all but one isolate. Thus, PCR/melt curve analysis achieved a nearly 100% accuracy and performed better than biochemical testing. Performance of the PCR/melt curve approach requires less than 2 h after colony selection. This method thus provides a rapid and accurate approach to the identification of staphylococcal species in the clinical laboratory
    corecore