406 research outputs found
Manipulation of ultracold atomic mixtures using microwave techniques
We used microwave radiation to evaporatively cool a mixture of of 133Cs and
87Rb atoms in a magnetic trap. A mixture composed of an equal number (around
10^4) of Rb and Cs atoms in their doubly polarized states at ultracold
temperatures was prepared. We also used microwaves to selectively evaporate
atoms in different Zeeman states.Comment: 9 pages, 6 figure
Sensitivity of an image plate system in the XUV (60 eV < E < 900 eV)
Phosphor imaging plates (IPs) have been calibrated and proven useful for
quantitative x-ray imaging in the 1 to over 1000 keV energy range. In this
paper we report on calibration measurements made at XUV energies in the 60 to
900 eV energy range using beamline 6.3.2 at the Advanced Light Source at
Lawrence Berkeley National Laboratory. We measured a sensitivity of ~25 plus or
minus 15 counts/pJ over the stated energy range which is compatible with the
sensitivity of Si photodiodes that are used for time-resolved measurements. Our
measurements at 900 eV are consistent with the measurements made by Meadowcroft
et al. at ~1 keV.Comment: 7 pages, 2 figure
A Modeling Approach to Determine the Impacts of Land Use and Climate Change Scenarios on the Water Flux of the Upper Mara River
With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool 5 (SWAT) and Landsat imagery were utilized in the upper Mara River Basin in order to 1) map existing field scale land use practices in order to determine their impact 2) determine the impacts of land use change on water flux; and 3) determine the impacts of rainfall (0%, ±10% and ±20%) and air temperature variations (0% and +5%) based on the Intergovernmental Panel on Climate Change projections on the water flux of the 10 upper Mara River. This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results 15 show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and 20 water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results
A Caenorhabditis elegans Wild Type Defies the Temperature–Size Rule Owing to a Single Nucleotide Polymorphism in tra-3
Ectotherms rely for their body heat on surrounding temperatures. A key question in biology is why most ectotherms mature at a larger size at lower temperatures, a phenomenon known as the temperature–size rule. Since temperature affects virtually all processes in a living organism, current theories to explain this phenomenon are diverse and complex and assert often from opposing assumptions. Although widely studied, the molecular genetic control of the temperature–size rule is unknown. We found that the Caenorhabditis elegans wild-type N2 complied with the temperature–size rule, whereas wild-type CB4856 defied it. Using a candidate gene approach based on an N2 × CB4856 recombinant inbred panel in combination with mutant analysis, complementation, and transgenic studies, we show that a single nucleotide polymorphism in tra-3 leads to mutation F96L in the encoded calpain-like protease. This mutation attenuates the ability of CB4856 to grow larger at low temperature. Homology modelling predicts that F96L reduces TRA-3 activity by destabilizing the DII-A domain. The data show that size adaptation of ectotherms to temperature changes may be less complex than previously thought because a subtle wild-type polymorphism modulates the temperature responsiveness of body size. These findings provide a novel step toward the molecular understanding of the temperature–size rule, which has puzzled biologists for decades
Classification of Light-Induced Desorption of Alkali Atoms in Glass Cells Used in Atomic Physics Experiments
We attempt to provide physical interpretations of light-induced desorption
phenomena that have recently been observed for alkali atoms on glass surfaces
of alkali vapor cells used in atomic physics experiments. We find that the
observed desorption phenomena are closely related to recent studies in surface
science, and can probably be understood in the context of these results. If
classified in terms of the photon-energy dependence, the coverage and the
bonding state of the alkali adsorbates, the phenomena fall into two categories:
It appears very likely that the neutralization of isolated ionic adsorbates by
photo-excited electron transfer from the substrate is the origin of the
desorption induced by ultraviolet light in ultrahigh vacuum cells. The
desorption observed in low temperature cells, on the other hand, which is
resonantly dependent on photon energy in the visible light range, is quite
similar to light-induced desorption stimulated by localized electronic
excitation on metallic aggregates. More detailed studies of light-induced
desorption events from surfaces well characterized with respect to alkali
coverage-dependent ionicity and aggregate morphology appear highly desirable
for the development of more efficient alkali atom sources suitable to improve a
variety of atomic physics experiments.Comment: 6 pages, 1 figure; minor corrections made, published in e-Journal of
Surface Science and Nanotechnology at
http://www.jstage.jst.go.jp/article/ejssnt/4/0/4_63/_articl
Dynamic Chromatin Organization during Foregut Development Mediated by the Organ Selector Gene PHA-4/FoxA
Central regulators of cell fate, or selector genes, establish the identity of cells by direct regulation of large cohorts of genes. In Caenorhabditis elegans, foregut (or pharynx) identity relies on the FoxA transcription factor PHA-4, which activates different sets of target genes at various times and in diverse cellular environments. An outstanding question is how PHA-4 distinguishes between target genes for appropriate transcriptional control. We have used the Nuclear Spot Assay and GFP reporters to examine PHA-4 interactions with target promoters in living embryos and with single cell resolution. While PHA-4 was found throughout the digestive tract, binding and activation of pharyngeally expressed promoters was restricted to a subset of pharyngeal cells and excluded from the intestine. An RNAi screen of candidate nuclear factors identified emerin (emr-1) as a negative regulator of PHA-4 binding within the pharynx, but emr-1 did not modulate PHA-4 binding in the intestine. Upon promoter association, PHA-4 induced large-scale chromatin de-compaction, which, we hypothesize, may facilitate promoter access and productive transcription. Our results reveal two tiers of PHA-4 regulation. PHA-4 binding is prohibited in intestinal cells, preventing target gene expression in that organ. PHA-4 binding within the pharynx is limited by the nuclear lamina component EMR-1/emerin. The data suggest that association of PHA-4 with its targets is a regulated step that contributes to promoter selectivity during organ formation. We speculate that global re-organization of chromatin architecture upon PHA-4 binding promotes competence of pharyngeal gene transcription and, by extension, foregut development
Alternative Splicing Regulation During C. elegans Development: Splicing Factors as Regulated Targets
Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (∼18%) of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold) during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 – now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors by NMD may have downstream effects on alternative splicing regulation
The TALE Class Homeobox Gene Smed-prep Defines the Anterior Compartment for Head Regeneration
Planaria continue to blossom as a model system for understanding all aspects of regeneration. They provide an opportunity to understand how the replacement of missing tissues from preexisting adult tissue is orchestrated at the molecular level. When amputated along any plane, planaria are capable of regenerating all missing tissue and rescaling all structures to the new size of the animal. Recently, rapid progress has been made in understanding the developmental pathways that control planarian regeneration. In particular Wnt/beta-catenin signaling is central in promoting posterior fates and inhibiting anterior identity. Currently the mechanisms that actively promote anterior identity remain unknown. Here, Smed-prep, encoding a TALE class homeodomain, is described as the first gene necessary for correct anterior fate and patterning during planarian regeneration. Smed-prep is expressed at high levels in the anterior portion of whole animals, and Smed-prep(RNAi) leads to loss of the whole brain during anterior regeneration, but not during lateral regeneration or homeostasis in intact worms. Expression of markers of different anterior fated cells are greatly reduced or lost in Smed-prep(RNAi) animals. We find that the ectopic anterior structures induced by abrogation of Wnt signaling also require Smed-prep to form. We use double knockdown experiments with the S. mediterranea ortholog of nou-darake (that when knocked down induces ectopic brain formation) to show that Smed-prep defines an anterior fated compartment within which stem cells are permitted to assume brain fate, but is not required directly for this differentiation process. Smed-prep is the first gene clearly implicated as being necessary for promoting anterior fate and the first homeobox gene implicated in establishing positional identity during regeneration. Together our results suggest that Smed-prep is required in stem cell progeny as they form the anterior regenerative blastema and is required for specifying anterior cell fates and correct patterning
Last Men Standing: Chlamydatus Portraits and Public Life in Late Antique Corinth
Notable among the marble sculptures excavated at Corinth are seven portraits of men wearing the long chlamys of Late Antique imperial office. This unusual costume, contemporary portrait heads, and inscribed statue bases all help confirm that new public statuary was created and erected at Corinth during the 4th and 5th centuries. These chlamydatus portraits, published together here for the first time, are likely to represent the Governor of Achaia in his capital city, in the company of local benefactors. Among the last works of the ancient sculptural tradition, they form a valuable source of information on public life in Late Antique Corinth
- …