52 research outputs found

    Suppression of turbulence in wall‐bounded flows by high‐frequency spanwise oscillations

    Full text link
    The response of wall‐flow turbulence to high‐frequency spanwise oscillations was investigated by direct numerical simulations of a planar channel flow subjected either to an oscillatory spanwise cross‐flow or to the spanwise oscillatory motion of a channel wall. Periods of oscillation, Tosc+=Toscuτ2/ν, ranging from 25 to 500 were studied. For 25≤Tosc+≤200 the turbulent bursting process was suppressed, leading to sustained reductions of 10% to 40% in the turbulent drag and comparable attenuations in all three components of turbulence intensities as well as the turbulent Reynolds shear stress. Oscillations at Tosc+=100 produced the most effective suppression of turbulence. The results were independent of whether the oscillations were generated by a cross‐flow or by the motion of a channel wall. In the latter case, suppression of turbulence was restricted to the oscillating wall while the flow at the other wall remained fully turbulent. Spanwise oscillations may provide a simple and effective method for control of turbulence in wall‐bounded flows.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71217/2/PFADEB-4-8-1605-1.pd

    Control of wall turbulence by high frequency spanwise oscillations

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76966/1/AIAA-1993-3282-205.pd

    Prostaglandin E2 Regulates AMPA Receptor Phosphorylation and Promotes Membrane Insertion in Preoptic Area Neurons and Glia during Sexual Differentiation

    Get PDF
    Sexual differentiation of the rodent brain is dependent upon the organizing actions of the steroid hormone, estradiol. In the preoptic area, a brain region critical for the expression of adult reproductive behavior, there are twice as many dendritic spine synapses per unit length on newborn male neurons compared to female neurons and this sex difference correlates with the expression of adult male copulatory behavior. The sex difference in the POA is achieved via estradiol's upregulation of the membrane-derived lipid signaling molecule prostaglandin E2 (PGE2); PGE2 is necessary and sufficient to masculinize both dendritic spine density and adult sexual behavior in rats. We have previously shown that PGE2 activates EP2 and EP4 receptors which increases protein kinase A (PKA) activity and that masculinized dendritic spine density and sex behavior are both dependent upon PKA as well as activation of AMPA type glutamate receptors. In the current experiments, we build upon this signaling cascade by determining that PGE2 induces phosphorylation of the AMPA receptor subunit, GluR1, which leads to increased AMPA receptor insertion at the membrane. Treating female pups on the day of birth with PGE2 induced the phosphorylation of GluR1 at the PKA-sensitive site within 2 hours of treatment, an effect that was blocked by co-administration of the PKA/AKAP inhibitor, HT31 with PGE2. Brief treatment of mixed neuronal/glial POA cultures with PGE2 or the cAMP/PKA stimulator, forskolin, increased membrane associated GluR1 in both neurons and glia. We speculate that PGE2 induced increases in AMPA receptor associated with the membrane underlies our previously observed increase in dendritic spine density and is a critical component in the masculinization of rodent sex behavior

    Electrical and Mechanical Ventricular Activation During Left Bundle Branch Block and Resynchronization

    Get PDF
    Cardiac resynchronization therapy (CRT) aims to treat selected heart failure patients suffering from conduction abnormalities with left bundle branch block (LBBB) as the culprit disease. LBBB remained largely underinvestigated until it became apparent that the amount of response to CRT was heterogeneous and that the therapy and underlying pathology were thus incompletely understood. In this review, current knowledge concerning activation in LBBB and during biventricular pacing will be explored and applied to current CRT practice, highlighting novel ways to better measure and treat the electrical substrate

    Parallel Pseudo-Spectral Simulations Of Nonlinear Viscous Fingering In Miscible Displacements

    No full text
    High performance parallel pseudo-spectral methods for the simulation of two-dimensional miscible displacements in porous media are developed. The code is designed to perform high resolution, space and time accurate simulations of nonlinear viscous finger interactions, on various distributed memory architectures. The parallelization is based on a domain decomposition approach in latu sensu, where the decomposition is done either in physical space or in the Fourier representation of the fields. Simulations show occurrence of finger interaction mechanisms on isotropic and Taylor dispersion cases, and stresses the importance of the initial conditions even for results of long time integrations. The parallel Pseudo-Spectral code is shown to be efficient on various architectures. It gives high flop/s rates on vector computers (CRAY J90 and T90) and good speedup on distributed memory systems (IBM SP2 and CRAY T3D) INTRODUCTION Oil recovery from a reservoir can be greatly improved by injection..

    A 3D moving mesh Finite Element Method for two-phase flows

    No full text
    A 3D ALE Finite Element Method is developed to study two-phase flow phenomena using a new discretization method to compute the surface tension forces. The computational method is based on the Arbitrary Lagrangian-Eulerian formulation (ALE) and the Finite Element Method (FEM), creating a two-phase method with an improved model for the liquid-gas interface. An adaptive mesh update procedure is also proposed for effective management of the mesh to remove, add and repair elements, since the computational mesh nodes move according to the flow. The ALE description explicitly defines the two-phase interface position by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The proposed methodology for computing the curvature leads to accurate results with moderate programming effort and computational cost. Static and dynamic tests have been carried out to validate the method and the results have compared well to analytical solutions and experimental results found in the literature, demonstrating that the new proposed methodology provides good accuracy to describe the interfacial forces and bubble dynamics. This paper focuses on the description of the proposed methodology, with particular emphasis on the discretization of the surface tension force, the new remeshing technique, and the validation results. Additionally, a microchannel simulation in complex geometry is presented for two elongated bubbles. (C) 2014 Elsevier Inc. All rights reserved

    A finite difference technique for simulating unsteady viscoelastic free surface flows

    No full text
    This work is concerned with the development of a numerical method capable of simulating viscoelastic free surface flow of an Oldroyd-B fluid. The basic equations governing the flow of an Oldroyd-B fluid are considered. A novel formulation is developed for the computation of the non-Newtonian extra-stress components on rigid boundaries. The full free surface stress conditions are employed. The resulting governing equations are solved by a finite difference method on a staggered grid, influenced by the ideas of the marker-and-cell (MAC) method. Numerical results demonstrating the capabilities of this new technique are presented for a number of problems involving unsteady free surface flows

    On the transport through polymer layer and porous arterial wall in drug-eluting stents

    No full text
    The safety and efficacy of drug-eluting stents are strongly influenced by the transport of the antiproliferative/anti-inflammatory drugs in the arterial wall. Dissolution in the polymer coating and specific binding in the artery wall play an important role in the process. We consider the model of dissolution, transport and binding of sirolimus on an axisymmetric domain representing the polymer coating layer and the porous artery wall in the vicinity of a stent strut. We employ the FEM on an unstructured mesh to discretize the governing equations. We employ a nonlinear dissolution model for the dynamics in the coating, and a nonlinear saturable binding model that includes both specific and non-specific binding in the arterial wall as separate phases, as proposed by McGinty and Pontrelli (J Math Chem 54:967–976, 2016). The arterial wall is considered an anisotropic porous media, and the flow is considered to be governed by Darcy flow. The permeability in the polymer coating is considered to be very small, but finite. The endothelium lamina, where present, is modelled as a no-flow boundary. The effect of slow and fast release polymers is considered, showing that the time evolution of the process can be efficiently controlled by the polymer diffusion coefficient. In fact, an order of magnitude decrease in the polymer diffusion coefficient results in an order of magnitude increase in the time of drug delivery. It is estimated that 52–54% of the sirolimus mass actually diffuses into the arterial wall. However, the spatial distribution of the sirolimus is greatly influenced by the flow and the arterial wall properties, being therefore susceptible to patient health conditions
    corecore