35 research outputs found

    Auditory selectivity for acoustic features that confer species recognition in the tungara frog

    Get PDF
    In anurans, recognition of species-specific acoustic signals is essential to finding a mate. In many species, behavioral tests have elucidated which acoustic features contribute to species recognition, but the mechanisms by which the brain encodes these species-specific signal components are less well understood. The túngara frog produces a `whine' mating call that is characterized by a descending frequency sweep. However, much of the signal is unnecessary for recognition, as recognition behavior can be triggered by a descending two-tone step that mimics the frequency change in a portion of the whine. To identify the brain regions that contribute to species recognition in the túngara frog, we exposed females to a full-spectrum whine, a descending two-tone step that elicits recognition, the reversed two-tone step that does not elicit recognition, or no sound, and we measured expression of the neural activity-dependent gen

    GPER/GPR30, a Membrane Estrogen Receptor, is Expressed in the Brain and Retina of a Social Fish (Carassius auratus) and Colocalizes with Isotocin

    Get PDF
    Estradiol rapidly (within 30 minutes) influences a variety of sociosexual behaviors in both mammalian and nonmammalian vertebrates, including goldfish, in which it rapidly stimulates approach responses to the visual cues of females. Such rapid neuromodulatory effects are likely mediated via membrane-associated estrogen receptors; however, the localization and distribution of such receptors within the nervous system is not well described. To begin to address this gap, we identified GPER/GPR30, a G-protein-coupled estrogen receptor, in goldfish (Carassius auratus) neural tissue and used reverse-transcription polymerase chain reaction (RT-PCR) and in situ hybridization to test if GPR30 is expressed in the brain regions that might mediate visually guided social behaviors in males. We then used immunohistochemistry to determine whether GPR30 colocalizes with isotocin-producing cells in the preoptic area, a critical node in the highly conserved vertebrate social behavior network. We used quantitative (q)PCR to test whether GPR30 mRNA levels differ in males in breeding vs. nonbreeding condition and in males that were socially interacting with a female vs. a rival male. Our results show that GPR30 is expressed in the retina and in many brain regions that receive input from the retina and/or optic tectum, as well as in a few nodes in the social behavior network, including cell populations that produce isotocin. J. Comp. Neurol. 525:252–270, 2017

    Pheromone Exposure Influences Preoptic Arginine Vasotocin Gene Expression and Inhibits Social Approach Behavior in Response to Rivals but not Potential Mates

    Get PDF
    The nonapeptides arginine vasotocin (AVT) and vasopressin mediate a variety of social behaviors in vertebrates. However, the effects of these peptides on behavior can vary considerably both between and within species. AVT, in particular, stimulates aggressive and courtship responses typical of dominant males in several species, although it can also inhibit social interactions in some cases. Such differential effects may depend upon AVT influences within brain circuits that differ among species or between males that adopt alternative reproductive phenotypes and/or upon the differential activation of those circuits in different social contexts. However, to date, very little is known about how social stimuli that promote alternative behavioral responses influence AVT circuits within the brain. To address this issue, we exposed adult male goldfish to androstenedione (AD), a pheromonal signal that is released by both males and females during the breeding season, and measured social approach responses of males towards same- and other-sex individuals before and after AD exposure. In a second experiment, we measured AD-induced AVT gene expression using in situ hybridization. We found that brief exposure to AD induces social avoidance in response to rival males, but does not affect the level of sociality exhibited in response to sexually receptive females. Exposure to AD also increases AVT gene expression in the preoptic area of male goldfish, particularly in the parvocellular population of the preoptic nucleus. Together, these data suggest that AD is part of a social signaling system that induces social withdrawal specifically during male-male interactions by activating AVT neurons

    Testosterone Amplifies the Negative Valence of an Agonistic Gestural Display by Exploiting Receiver Perceptual Bias

    Get PDF
    Many animals communicate by performing elaborate displays that are incredibly extravagant and wildly bizarre. So, how do these displays evolve? One idea is that innate sensory biases arbitrarily favour the emergence of certain display traits over others, leading to the design of an unusual display. Here, we study how physiological factors associated with signal production influence this process, a topic that has received almost no attention. We focus on a tropical frog, whose males compete for access to females by performing an elaborate waving display. Our results show that sex hormones like testosterone regulate specific display gestures that exploit a highly conserved perceptual system, evolved originally to detect \u27dangerous\u27 stimuli in the environment. Accordingly, testosterone makes certain gestures likely to appear more perilous to rivals during combat. This suggests that hormone action can interact with effects of sensory bias to create an evolutionary optimum that guides how display exaggeration unfolds

    Increased Action Potential Firing Rates of Layer 2/3 Pyramidal Cells in the Prefrontal Cortex are Significantly Related to Cognitive Performance in Aged Monkeys

    Get PDF
    The neurobiological substrates of significant age-related deficits in higher cognitive abilities mediated by the prefrontal cortex (PFC) are unknown. To address this issue, whole-cell current-clamp recordings were used to compare the intrinsic membrane and action potential (AP) firing properties of layer 2/3 pyramidal cells in PFC slices from young and aged behaviorally characterized rhesus monkeys. Most aged subjects demonstrated impaired performance in Delayed Non-Match to Sample (DNMS) task acquisition, DNMS 2 min delay and the Delayed Recognition Span task. Resting membrane potential and membrane time constant did not differ in aged relative to young cells, but input resistance was significantly greater in aged cells. Single APs did not differ in terms of threshold, duration or rise time, but their amplitude and fall time were significantly decreased in aged cells. Repetitive AP firing rates were significantly increased in aged cells. Within the aged group, there was a U-shaped quadratic relationship between firing rate and performance on each behavioral task. Subjects who displayed either low or very high firing rates exhibited poor performance, while those who displayed intermediate firing rates exhibited relatively good performance. These data indicate that an increase in AP firing rate may be responsible, in part, for age-related PFC dysfunction

    Increased Androgenic Sensitivity in the Hind Limb Muscular System Marks the Evolution of a Derived Gestural Display

    Get PDF
    Physical gestures are prominent features of many species’ multi- modal displays, yet how evolution incorporates body and leg movements into animal signaling repertoires is unclear. Andro- genic hormones modulate the production of reproductive signals and sexual motor skills in many vertebrates; therefore, one possi- bility is that selection for physical signals drives the evolution of androgenic sensitivity in select neuromotor pathways. We exam- ined this issue in the Bornean rock frog (Staurois parvus, family: Ranidae). Males court females and compete with rivals by per- forming both vocalizations and hind limb gestural signals, called “foot flags.” Foot flagging is a derived display that emerged in the ranids after vocal signaling. Here, we show that administration of testosterone (T) increases foot flagging behavior under seminatural conditions. Moreover, using quantitative PCR, we also find that adult male S. parvus maintain a unique androgenic phenotype, in which androgen receptor (AR) in the hind limb musculature is expressed at levels ∼10× greater than in two other anuran species, which do not produce foot flags (Rana pipiens and Xenopus laevis). Finally, because males of all three of these species solicit mates with calls, we accordingly detect no differences in AR expression in the vocal apparatus (larynx) among taxa. The results show that foot flagging is an androgen-dependent gestural signal, and its emergence is associated with increased androgenic sensitivity within the hind limb musculature. Selection for this novel gestural signal may therefore drive the evolution of increased AR expres- sion in key muscles that control signal production to support adap- tive motor performance

    Insight into the Evolution of Anuran Foot Flag Displays: A Comparative Study of Color and Kinematics

    Get PDF
    Understanding how complex animal displays evolve is a major goal of evolutionary organismal biology. Here, we study this topic by comparing convergently evolved gestural displays in two unrelated species of frog (Bornean Rock Frog, Staurois parvus, and Kottigehara Dancing Frog, Micrixalus kottigeharensis). This behavior, known as a foot flag, is produced when a male ?waves\u27 his hindlimb at another male during bouts of competition for access to mates. We assess patterns of variation in the color of frog feet and the kinematics of the display itself to help pinpoint similarities and differences of the visual signal elements. We find clear species differences in the color of foot webbing, which is broadcast to receivers during specific phases of the display. Analyses of foot-trajectory duration and geometry also reveal clear species differences in display speed and shape - S. parvus generates a faster and more circular visual signal, while M. kottigeharensis generates a much slower and more elliptical one. These data are consistent with the notion that color, speed, and shape likely encode species identity. However, we also found that foot flag speed shows significant among-individual variation, particularly the phase of the display in which foot webbings are visible. This result is consistent with the idea that frogs alter temporal signal components, which may showcase individual condition, quality, or motivation. Overall, our comparative study helps elucidate the variability of foot flagging behavior in a manner that informs how we understand the design principles that underlie its function as a signal in intraspecific communication

    A Common Endocrine Signature Marks the Convergent Evolution of an Elaborate Dance Display in Frogs

    Get PDF
    Unrelated species often evolve similar phenotypic solutions to the same environmental problem, a phenomenon known as convergent evolution. But how do these common traits arise? We address this question from a physiological perspective by assessing how convergence of an elaborate gestural display in frogs (foot-flagging) is linked to changes in the androgenic hormone systems that underlie it. We show that the emergence of this rare display in unrelated anuran taxa is marked by a robust increase in the expression of androgen receptor (AR) messenger RNA in the musculature that actuates leg and foot movements, but we find no evidence of changes in the abundance of AR expression in these frogs’ central nervous systems. Meanwhile, the magnitude of the evolutionary change in muscular AR and its association with the origin of foot-flagging differ among clades, suggesting that these variables evolve together in a mosaic fashion. Finally, while gestural displays do differ between species, variation in the complexity of a foot-flagging routine does not predict differences in muscular AR. Altogether, these findings suggest that androgen-muscle interactions provide a conduit for convergence in sexual display behavior, potentially providing a path of least resistance for the evolution of motor performance

    Androgen Receptor Modulates Multimodal Displays in the Bornean Rock Frog (Staurois parvus)

    Get PDF
    Multimodal communication is common in the animal kingdom. It occurs when animals display by stimulating two or more receiver sensory systems, and often arises when selection favors multiple ways to send messages to conspecifics. Mechanisms of multimodal display behavior are poorly understood, particularly with respect to how animals coordinate the production of different signals. One important question is whether all components in a multimodal display share an underlying physiological basis, or whether different components are regulated independently. We investigated the influence of androgen receptors (ARs) on the production of both visual and vocal signal components in the multimodal display repertoire of the Bornean rock frog (Staurois parvus). To assess the role of AR in signal production, we treated reproductively active adult males with the antiandrogen flutamide (FLUT) and measured the performance of each component signal in the multimodal display. Our results show that blocking AR inhibited the production of multiple visual signals, including a conspicuous visual signal known as the foot flag, which is produced by rotating the hind limb above the body. However, FLUT treatment caused no measurable change in vocal signaling behavior, or in the frequency or fine temporal properties of males calls. Our study, therefore, suggests that activation of AR is not a physiological prerequisite to the coordination of multiple signals, in that it either does not regulate all signaling behaviors in a male s display repertoire or it does so only in a context-dependent manner

    Neural Activity Patterns in Response to Interspecific and Intraspecific Variation in Mating Calls in the Túngara Frog

    Get PDF
    During mate choice, individuals must classify potential mates according to species identity and relative attractiveness. In many species, females do so by evaluating variation in the signals produced by males. Male túngara frogs (Physalaemus pustulosus) can produce single note calls (whines) and multi-note calls (whine-chucks). While the whine alone is sufficient for species recognition, females greatly prefer the whine-chuck when given a choice.To better understand how the brain responds to variation in male mating signals, we mapped neural activity patterns evoked by interspecific and intraspecific variation in mating calls in túngara frogs by measuring expression of egr-1. We predicted that egr-1 responses to conspecific calls would identify brain regions that are potentially important for species recognition and that at least some of those brain regions would vary in their egr-1 responses to mating calls that vary in attractiveness. We measured egr-1 in the auditory brainstem and its forebrain targets and found that conspecific whine-chucks elicited greater egr-1 expression than heterospecific whines in all but three regions. We found no evidence that preferred whine-chuck calls elicited greater egr-1 expression than conspecific whines in any of eleven brain regions examined, in contrast to predictions that mating preferences in túngara frogs emerge from greater responses in the auditory system.Although selectivity for species-specific signals is apparent throughout the túngara frog brain, further studies are necessary to elucidate how neural activity patterns vary with the attractiveness of conspecific mating calls
    corecore