27 research outputs found

    SGNP: An Essential Stress Granule/Nucleolar Protein Potentially Involved in 5.8s rRNA Processing/Transport

    Get PDF
    Background: Stress Granules (SG) are sites of accumulation of stalled initiation complexes that are induced following a variety of cellular insults. In a genetic screen for factors involved in protecting human myoblasts from acute oxidative stress, we identified a gene encoding a protein we designate SGNP (Stress Granule and Nucleolar Protein). Methodology/Principal Findings: A gene-trap insertional mutagenesis screen produced one insertion that conferred resistance to sodium arsenite. RT-PCR/39 RACE was used to identify the endogenous gene expressed as a GFP-fusion transcript. SGNP is localized in both the cytoplasm and nucleolus and defines a non-nucleolar compartment containing 5.8S rRNA, a component of the 60S ribosomal subunit. Under oxidative stress, SGNP nucleolar localization decreases and it rapidly co-localizes with stress granules. The decrease in nucleolar SGNP following oxidative stress was accompanied by a large increase in nucleolar 5.8S rRNA. Knockdown of SGNP with shRNA increased global mRNA translation but induced growth arrest and cell death. Conclusions: These results suggest that SGNP is an essential gene that may be involved in ribosomal biogenesis and translational control in response to oxidative stress

    Local and global regulation of transcription initiation in bacteria

    Get PDF

    Omptin

    No full text

    Contribution of plasminogen activation towards the pathogenic potential of oral streptococci

    Get PDF
    Oral streptococci are a heterogeneous group of human commensals, with a potential to cause serious infections. Activation of plasminogen has been shown to increase the virulence of typical human pathogenic streptococci such as S. pneumoniae. One important factor for plasminogen activation is the streptococcal α-enolase. Here we report that plasminogen activation is also common in oral streptococci species involved in clinical infection and that it depends on the action of human plasminogen activators. The ability to activate plasminogen did not require full conservation of the internal plasminogen binding sequence motif FYDKERKVY of α-enolase that was previously described as crucial for increased plasminogen binding, activation and virulence. Instead, experiments with recombinant α-enolase variants indicate that the naturally occurring variations do not impair plasminogen binding. In spite of these variations in the internal plasminogen binding motif oral streptococci showed similar activation of plasminogen. We conclude that the pathomechanism of plasminogen activation is conserved in oral streptococci that cause infections in human. This may contribute to their opportunistic pathogenic character that is unfurled in certain niches
    corecore