28 research outputs found

    Optical coherence tomography of the preterm eye: from retinopathy of prematurity to brain development

    No full text
    Preterm infants with retinopathy of prematurity are at increased risk of poor neurodevelopmental outcomes. Because the neurosensory retina is an extension of the central nervous system, anatomic abnormalities in the anterior visual pathway often relate to system and central nervous system health. We describe optical coherence tomography as a powerful imaging modality that has recently been adapted to the infant population and provides noninvasive, high-resolution, cross-sectional imaging of the infant eye at the bedside. Optical coherence tomography has increased understanding of normal eye development and has identified several potential biomarkers of brain abnormalities and poorer neurodevelopment

    Melanoma associated retinopathy: A new dimension using adaptive optics

    No full text
    We report a 56-year-old male patient, complaining of metamorphopsia in his left eye nevertheless visual acuity, slit lamp, and fundus examinations were within normal limits. Microperimetry (MAIA, Centervue, Italy) revealed central field loss and spectral domain optical coherence tomography (Spectralis, Heidelberg, Germany) showed disrupted cone outer segment tip layer. The patient had a diagnosis of cutaneous melanoma in his foot for which an excision biopsy with lymph node dissection was performed 5 months earlier. Our clinical diagnosis was melanoma-associated retinopathy. Electrophysiology confirmed the diagnosis. Adaptive optics retinal imaging (Imagine eyes, Orsay) was performed to assess the cone mosaic integrity across the central retina. This is the first report on the investigation of autoimmune retinopathy using adaptive optics ophthalmoscopy. This case highlights the viability of innovative diagnostic modalities that aid early detection and subsequent management of vision threatening retinal

    Impact of expansion of telemedicine screening for retinopathy of prematurity in India.

    Get PDF
    PURPOSE: The purpose of this study is to estimate the unknown burden of retinopathy of prematurity (ROP) blindness from nine states of India using demographic, incidence and treatment data from an ongoing statewide ROP program in Karnataka called the Karnataka Internet Assisted Diagnosis of ROP (KIDROP) and to calculate the fiscal quantum of preventable blindness in these states. MATERIALS AND METHODS: The KIDROP model is an ongoing tele-ROP service providing screening and treatment for ROP in Karnataka since 2008. Using this index strategy, an impact assessment in nine other states was constructed, the number of potential blind babies enumerated, the fiscal quantum of blindness prevented in blind person-years (BPYs), and the increase in burden with improving survival and institutional deliveries calculated. RESULTS: The total population in the ten study states is 681.5 million. The eligible babies for ROP screening annually are 467,664. The number of babies admitted to neonatal units is 188,561 of which 160,277 are likely to survive and require screening. Based on KIDROP data, ROP would develop in 35,886 of these infants, and 1281 babies would require treatment annually. The fiscal quantum of BPY saved in these ten states is USD 108.4 million annually, with a further increase of USD 106.8 million with improving infant survival and higher admission rates for delivery. CONCLUSION: A KIDROP like model can provide ROP screening in low-resource settings, remote centers, and regions with few ROP specialists. Expanding the model to other states with similar demographics can prevent over USD 100 million of blindness burden annually

    Retinal Imaging of Infants on Spectral Domain Optical Coherence Tomography

    No full text
    Spectral domain coherence tomography (SD OCT) has become an important tool in the management of pediatric retinal diseases. It is a noncontact imaging device that provides detailed assessment of the microanatomy and pathology of the infant retina with a short acquisition time allowing office examination without the requirement of anesthesia. Our understanding of the development and maturation of the infant fovea has been enhanced by SD OCT allowing an in vivo assessment that correlates with histopathology. This has helped us understand the critical correlation of foveal development with visual potential in the first year of life and beyond. In this review, we summarize the recent literature on the clinical applications of SD OCT in studying the pathoanatomy of the infant macula, its ability to detect subclinical features, and its correlation with disease and vision. Retinopathy of prematurity and macular edema have been discussed in detail. The review also summarizes the current status of SD OCT in other infant retinal conditions, imaging the optic nerve, the choroid, and the retinal nerve fibre in infants and children, and suggests future areas of research

    Impact of improved neonatal care on the profile of retinopathy of prematurity in rural neonatal centers in India over a 4-year period

    No full text
    Purpose: To report the reduction in the incidence and severity of retinopathy of prematurity (ROP) in rural India over a 4-year period following the introduction of improved neonatal care practices. Methods: The Karnataka Internet Diagnosis of Retinopathy of Prematurity program (KIDROP), is a tele-medicine network that screens for ROP in different zones of Karnataka state in rural India. North Karnataka is the most underdeveloped and remote zone of this program and did not have any ROP screening programs before the intervention of the KIDROP in 2011. Six government and eleven private neonatal centers in this zone were screened weekly. Specific neonatal guidelines for ROP were developed and introduced in these centers. They included awareness about risk factors, oxygen regulation protocols, use of pulse oxymetry, monitoring postnatal weight gain, nutritional best practices, and management of sepsis. The incidence and severity of ROP were compared before the guidelines were introduced (Jan 2011 to Dec 2012) and after the guidelines were introduced (July 2013 to June 2015). Results: During this 4-year period, 4,167 infants were screened over 11,390 imaging sessions. The number of enrolled infants increased from 1,825 to 2,342 between the two periods (

    Enhancing Image Characteristics of Retinal Images of Aggressive Posterior Retinopathy of Prematurity Using a Novel Software, (RetiView)

    Get PDF
    Purpose. To report pilot data from a novel image analysis software “RetiView,” to highlight clinically relevant information in RetCam images of infants with aggressive posterior retinopathy of prematurity (APROP). Methods. Twenty-three imaging sessions of consecutive infants of Asian Indian origin with clinically diagnosed APROP underwent three protocols (Grey Enhanced (GE), Color Enhanced (CE), and “Vesselness Measure” (VNM)) of the software. The postprocessed images were compared to baseline data from the archived unprocessed images and clinical exam by the retinopathy of prematurity (ROP) specialist for anterior extent of the vessels, capillary nonperfusion zones (CNP), loops, hemorrhages, and flat neovascularization. Results. There was better visualization of tortuous loops in the GE protocol (56.5%); “bald” zones within the CNP zones (26.1%), hemorrhages (13%), and edge of the disease (34.8%) in the CE images; neovascularization on both GE and CE protocols (13% each); clinically relevant information in cases with poor pupillary dilatation (8.7%); anterior extent of vessels on the VNM protocol (13%) effecting a “reclassification” from zone 1 to zone 2 posterior. Conclusions. RetiView is a noninvasive and inexpensive method of customized image enhancement to detect clinically difficult characteristics in a subset of APROP images with a potential to influence treatment planning
    corecore