48 research outputs found
The ORF, Regulated Synthesis, and Persistence-Specific Variation of Influenza C Viral NS1 Protein
AbstractThe open reading frame (ORF) and the regulated synthesis of the influenza C viral NS1 protein were analyzed in view of viruses possessing different biological activities. We provide evidence for a 246-amino-acid NS1-ORF, encoded by five viral strains and variants. Prokaryotic expression of the prototype NS1-ORF resulted in a product of 27 kDa, confirming the predicted molecular weight. Using an antiserum raised against recombinant NS1 protein, nonstructural proteins of wild-type virus were detected in infected cells for a limited course of time, whereas a persistent virus variant was characterized by a long-term nonstructural gene expression. As examined by infection experiments, the intracellular distribution of nonstructural protein was nuclear and cytoplasmic, whereas in NS1 gene-transfected cells, the cytoplasmic localization occurred in a fine-grained structure, suggesting an analogy to influenza A viral NS1 protein. Concerning persistent infection, NS1 protein species differing in sizes and posttranslational modifications were observed for a persistent virus variant, as particularly illustrated by a high degree of NS1 phosphorylation. Virus reassortant analyses proved the importance of the NS-coding genomic segment: the minimal viral properties required for the establishment of persistence were transferred with this segment to a monoreassortant virus. Thus the influenza C viral NS1 protein is a 246-amino-acid nuclear-cytoplasmic phosphoprotein that can be subject to specific variations being functionally linked to a persistent virus phenotype
Massive X-ray screening reveals two allosteric drug binding sites of SARS-CoV-2 main protease
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous health problems and economical challenges for mankind. To date, no effective drug is available to directly treat the disease and prevent virus spreading. In a search for a drug against COVID-19, we have performed a massive X-ray crystallographic screen of repurposing drug libraries containing 5953 individual compounds against the SARS-CoV-2 main protease (Mpro), which is a potent drug target as it is essential for the virus replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds binding to Mpro. In subsequent cell-based viral reduction assays, one peptidomimetic and five non-peptidic compounds showed antiviral activity at non-toxic concentrations. Interestingly, two compounds bind outside the active site to the native dimer interface in close proximity to the S1 binding pocket. Another compound binds in a cleft between the catalytic and dimerization domain of Mpro. Neither binding site is related to the enzymatic active site and both represent attractive targets for drug development against SARS-CoV-2. This X-ray screening approach thus has the potential to help deliver an approved drug on an accelerated time-scale for this and future pandemics
X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (M^(pro)), which is essential for viral replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to M^(pro). In subsequent cell-based viral reduction assays, one peptidomimetic and six non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2
Modelling of combustion acoustics sources and their dynamics in the PRECCINSTA burner test case
A stochastic, hybrid computational fluid dynamics/computational combustion acoustics approach for combustion noise prediction is applied to the PRECCINSTA laboratory scale combustor (prediction and control of combustion instabilities in industrial gas turbines). The numerical method is validated for its ability to accurately reproduce broadband combustion noise levels from measurements. The approach is based on averaged flow field and turbulence statistics from computational fluid dynamics simulations. The three-dimensional fast random particle method for combustion noise prediction is employed for the modelling of time-resolved dynamics of sound sources and sound propagation via linearised Euler equations. A comprehensive analysis of simulated sound source dynamics is carried out in order to contribute to the understanding of combustion noise formation mechanisms. Therefrom gained knowledge can further on be incorporated for the investigation of onset of thermoacoustic phenomena. The method-inherent stochastic Langevin ansatz for the realisation of turbulence related source decay is analysed in terms of reproduction ability of local one- and two-point statistical input and therefore its applicability to complex test cases. Furthermore, input turbulence statistics are varied, in order to investigate the impact of turbulence on the resulting sound pressure spectra for a swirl stabilised, technically premixed combustor
Individualstatistische Untersuchungen ueber die Erkrankungs- und Unfallhaeufigkeit von Wehrpflichtigen und Soldaten auf Zeit in der Nationalen Volksarmee
HUB (B11) - 69 HB 1614 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman