5 research outputs found
On Huisman's conjectures about unramified real curves
Let be an unramified real curve with
. If is odd, Huisman conjectures that
is an -curve and that every branch of is a pseudo-line.
If is even, he conjectures that is a rational normal curve or a
twisted form of a such. We disprove the first conjecture by giving a family of
counterexamples. We remark that the second conjecture follows for generic
curves of odd degree from the formula enumerating the number of complex
inflection points.Comment: 9 pages, 2 figure
Total-reelle Linearsysteme auf algebraischen Kurven
Ist X eine reelle Kurve, so bezeichnet N(X) die kleinste natĂŒrliche Zahl, sodass jeder Divisor vom Grad mindestens N(X) zu einem total-reellen Divisor linear Ă€quivalent ist. Die Existenz von N(X) â der sogenannten reellen Divisorenschranke â wurde von Scheiderer (2000) bewiesen. Da die BeschrĂ€nkung von N(X) fĂŒr Kurven mit wenigen Komponenten schwierig ist, beschĂ€ftigt sich die vorliegende Arbeit mit gewissen SonderfĂ€llen und den daraus resultierenden Erkenntnissen fĂŒr die Theorie reeller algebraischer Kurven.
Die bisher bekannten Hauptergebnisse bezĂŒglich N(X) können wir folgt zusammengefasst werden: Besitzt X viele Komponenten, so kann die reelle Divisorenschranke durch 2g-1 beschrĂ€nkt werden, wobei g das Geschlecht von X bezeichnet [Huisman (2003), Monnier (2005)]. Im Allgemeinen ist jedoch nicht bekannt, von welchen Werten N(X) ĂŒberhaupt abhĂ€ngt.
Im Fall von (M-2)-Kurven zeigen wir einen Zusammenhang zwischen der reellen Divisorenschranke und einer von Huisman im Jahr 2003 aufgestellten Vermutung ĂŒber unverzweigte reelle Kurven auf. Durch eine explizite Konstruktion widerlegen wir seine Vermutung im 3-dimensionalen Raum und zeigen dadurch die Existenz von Raumkurven auf, welche keinen total-reellen Hyperebenenschnitt besitzen. In gerade-dimensionalen RĂ€umen beweisen wir Huismans Vermutung fĂŒr kanonische Kurven und fĂŒr generische Kurven geraden Grades.
Wir stellen die sogenannte Hermite-Methode vor, welche es in Minimalbeispielen erlaubt zu prĂŒfen, ob eine gegebene Kurve einen (reduzierten) total-reellen Hyperebenenschnitt besitzt. Dadurch zeigen wir die Existenz von unendlich vielen ebenen Quartiken auf, fĂŒr welche N(X)=5 gilt.
SchlieĂlich nutzen wir Harnacks klassische Konstruktion (1876) aus, um die Existenz ebener Kurven mit vorgegebenen topologischen Invarianten aufzuzeigen, sodass das zugrundeliegende Geradenlinearsystem (reduziert) total-reell ist
Computing totally real hyperplane sections and linear series on algebraic curves
Given a real algebraic curve, embedded in projective space, we study the
computational problem of deciding whether there exists a hyperplane meeting the
curve in real points only. More generally, given any divisor on such a curve,
we may ask whether the corresponding linear series contains an effective
divisor with totally real support. This translates into a particular type of
parametrized real root counting problem that we wish to solve exactly. On the
other hand, it is known that for a given genus and number of real connected
components, any linear series of sufficiently large degree contains a totally
real effective divisor. Using the algorithms described in this paper, we solve
a number of examples, which we can compare to the best known bounds for the
required degree
Computing totally real hyperplane sections and linear series on algebraic curves
International audienceGiven a real algebraic curve, embedded in projective space, we study the computational problem of deciding whether there exists a hyperplane meeting the curve in real points only. More generally, given any divisor on such a curve, we may ask whether the corresponding linear series contains an effective divisor with totally real support. This translates into a particular type of parametrized real root counting problem that we wish to solve exactly. On the other hand, it is known that for a given genus and number of real connected components, any linear series of sufficiently large degree contains a totally real effective divisor. Using the algorithms described in this paper, we solve a number of examples, which we can compare to the best known bounds for the required degree
Computing totally real hyperplane sections and linear series on algebraic curves
International audienceGiven a real algebraic curve, embedded in projective space, we study the computational problem of deciding whether there exists a hyperplane meeting the curve in real points only. More generally, given any divisor on such a curve, we may ask whether the corresponding linear series contains an effective divisor with totally real support. This translates into a particular type of parametrized real root counting problem that we wish to solve exactly. On the other hand, it is known that for a given genus and number of real connected components, any linear series of sufficiently large degree contains a totally real effective divisor. Using the algorithms described in this paper, we solve a number of examples, which we can compare to the best known bounds for the required degree