5 research outputs found

    On Huisman's conjectures about unramified real curves

    Full text link
    Let X⊂PnX \subset \mathbb{P}^{n} be an unramified real curve with X(R)≠∅X(\mathbb{R}) \neq \emptyset. If n≄3n \geq 3 is odd, Huisman conjectures that XX is an MM-curve and that every branch of X(R)X(\mathbb{R}) is a pseudo-line. If n≄4n \geq 4 is even, he conjectures that XX is a rational normal curve or a twisted form of a such. We disprove the first conjecture by giving a family of counterexamples. We remark that the second conjecture follows for generic curves of odd degree from the formula enumerating the number of complex inflection points.Comment: 9 pages, 2 figure

    Total-reelle Linearsysteme auf algebraischen Kurven

    Get PDF
    Ist X eine reelle Kurve, so bezeichnet N(X) die kleinste natĂŒrliche Zahl, sodass jeder Divisor vom Grad mindestens N(X) zu einem total-reellen Divisor linear Ă€quivalent ist. Die Existenz von N(X) – der sogenannten reellen Divisorenschranke – wurde von Scheiderer (2000) bewiesen. Da die BeschrĂ€nkung von N(X) fĂŒr Kurven mit wenigen Komponenten schwierig ist, beschĂ€ftigt sich die vorliegende Arbeit mit gewissen SonderfĂ€llen und den daraus resultierenden Erkenntnissen fĂŒr die Theorie reeller algebraischer Kurven. Die bisher bekannten Hauptergebnisse bezĂŒglich N(X) können wir folgt zusammengefasst werden: Besitzt X viele Komponenten, so kann die reelle Divisorenschranke durch 2g-1 beschrĂ€nkt werden, wobei g das Geschlecht von X bezeichnet [Huisman (2003), Monnier (2005)]. Im Allgemeinen ist jedoch nicht bekannt, von welchen Werten N(X) ĂŒberhaupt abhĂ€ngt. Im Fall von (M-2)-Kurven zeigen wir einen Zusammenhang zwischen der reellen Divisorenschranke und einer von Huisman im Jahr 2003 aufgestellten Vermutung ĂŒber unverzweigte reelle Kurven auf. Durch eine explizite Konstruktion widerlegen wir seine Vermutung im 3-dimensionalen Raum und zeigen dadurch die Existenz von Raumkurven auf, welche keinen total-reellen Hyperebenenschnitt besitzen. In gerade-dimensionalen RĂ€umen beweisen wir Huismans Vermutung fĂŒr kanonische Kurven und fĂŒr generische Kurven geraden Grades. Wir stellen die sogenannte Hermite-Methode vor, welche es in Minimalbeispielen erlaubt zu prĂŒfen, ob eine gegebene Kurve einen (reduzierten) total-reellen Hyperebenenschnitt besitzt. Dadurch zeigen wir die Existenz von unendlich vielen ebenen Quartiken auf, fĂŒr welche N(X)=5 gilt. Schließlich nutzen wir Harnacks klassische Konstruktion (1876) aus, um die Existenz ebener Kurven mit vorgegebenen topologischen Invarianten aufzuzeigen, sodass das zugrundeliegende Geradenlinearsystem (reduziert) total-reell ist

    Computing totally real hyperplane sections and linear series on algebraic curves

    Get PDF
    Given a real algebraic curve, embedded in projective space, we study the computational problem of deciding whether there exists a hyperplane meeting the curve in real points only. More generally, given any divisor on such a curve, we may ask whether the corresponding linear series contains an effective divisor with totally real support. This translates into a particular type of parametrized real root counting problem that we wish to solve exactly. On the other hand, it is known that for a given genus and number of real connected components, any linear series of sufficiently large degree contains a totally real effective divisor. Using the algorithms described in this paper, we solve a number of examples, which we can compare to the best known bounds for the required degree

    Computing totally real hyperplane sections and linear series on algebraic curves

    No full text
    International audienceGiven a real algebraic curve, embedded in projective space, we study the computational problem of deciding whether there exists a hyperplane meeting the curve in real points only. More generally, given any divisor on such a curve, we may ask whether the corresponding linear series contains an effective divisor with totally real support. This translates into a particular type of parametrized real root counting problem that we wish to solve exactly. On the other hand, it is known that for a given genus and number of real connected components, any linear series of sufficiently large degree contains a totally real effective divisor. Using the algorithms described in this paper, we solve a number of examples, which we can compare to the best known bounds for the required degree

    Computing totally real hyperplane sections and linear series on algebraic curves

    No full text
    International audienceGiven a real algebraic curve, embedded in projective space, we study the computational problem of deciding whether there exists a hyperplane meeting the curve in real points only. More generally, given any divisor on such a curve, we may ask whether the corresponding linear series contains an effective divisor with totally real support. This translates into a particular type of parametrized real root counting problem that we wish to solve exactly. On the other hand, it is known that for a given genus and number of real connected components, any linear series of sufficiently large degree contains a totally real effective divisor. Using the algorithms described in this paper, we solve a number of examples, which we can compare to the best known bounds for the required degree
    corecore