2 research outputs found
Alternating Gyroid Network Structure in an ABC Miktoarm Terpolymer Comprised of Polystyrene and Two Polydienes
The synthesis, molecular and morphological characterization of a 3-miktoarm star terpolymer of polystyrene (PS, M¯¯¯¯n = 61.0 kg/mol), polybutadiene (PB, M¯¯¯¯n = 38.2 kg/mol) and polyisoprene (PI, M¯¯¯¯n = 29.2 kg/mol), corresponding to volume fractions (φ) of 0.46, 0.31 and 0.23 respectively, was studied. The major difference of the present material from previous ABC miktoarm stars (which is a star architecture bearing three different segments, all connected to a single junction point) with the same block components is the high 3,4-microstructure (55%) of the PI chains. The interaction parameter and the degree of polymerization of the two polydienes is sufficiently positive to create a three-phase microdomain structure as evidenced by differential scanning calorimetry and transmission electron microscopy (TEM). These results in combination with small-angle X-ray scattering (SAXS) and birefringence experiments suggest a cubic tricontinuous network structure, based on the I4132 space group never reported previously for such an architecture
Synthesis and Characterization of Hybrid Materials Derived from Conjugated Copolymers and Reduced Graphene Oxide
In this study the preparation of hybrid materials based on reduced graphene oxide (rGO) and conjugated copolymers is reported. By tuning the number and arrangement of thiophenes in the main chain (indacenothiophene or indacenothienothiophene) and the nature of the polymer acceptor (difluoro benzothiadiazole or diketopyrrolopyrrole) semiconducting copolymers were synthesized through Stille aromatic coupling and characterized to determine their molecular characteristics. The graphene oxide was synthesized using the Staudenmaier method and was further modified to reduced graphene oxide prior to structural characterization. Various mixtures with different rGO quantities and conjugated copolymers were prepared to determine the optoelectronic, thermal and morphological properties. An increase in the maximum absorbance ranging from 3 to 6 nm for all hybrid materials irrespective of the rGO concentration, when compared to the pristine conjugated copolymers, was estimated through the UV-Vis spectroscopy indicating a differentiation on the optical properties. Through voltammetric experiments the oxidation and reduction potentials were determined and the calculated HOMO and LUMO levels revealed a decrease on the electrochemical energy gap for low rGO concentrations. The study indicates the potential of the hybrid materials consisting of graphene oxide and high band gap conjugated copolymers for applications related to organic solar cells