521 research outputs found

    Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator

    Full text link
    We demonstrate a two-crystal mid-infrared dual-wavelength optical parametric oscillator, synchronously pumped by a high power femtosecond Yb:fiber laser. The singly-resonant ring cavity, containing two periodically poled lithium niobate crystals, is capable of generating two synchronized idler wavelengths, independently tunable over 30 THz in the 2.9 - 4.2 {\mu}m wavelength region, due to the cascaded quadratic nonlinear effect. The independent tunability of the two idlers makes the optical parametric oscillator a promising source for ultrafast pulse generation towards the THz wavelength region, based on different frequency generation. In addition, the observed frequency doubled idler within the crystal indicates the possibility to realize a broadband optical self-phase locking between pump, signal, idler and higher order generated parametric lights

    Soliton absorption spectroscopy

    Full text link
    We analyze optical soliton propagation in the presence of weak absorption lines with much narrower linewidths as compared to the soliton spectrum width using the novel perturbation analysis technique based on an integral representation in the spectral domain. The stable soliton acquires spectral modulation that follows the associated index of refraction of the absorber. The model can be applied to ordinary soliton propagation and to an absorber inside a passively modelocked laser. In the latter case, a comparison with water vapor absorption in a femtosecond Cr:ZnSe laser yields a very good agreement with experiment. Compared to the conventional absorption measurement in a cell of the same length, the signal is increased by an order of magnitude. The obtained analytical expressions allow further improving of the sensitivity and spectroscopic accuracy making the soliton absorption spectroscopy a promising novel measurement technique.Comment: 9 pages, 7 figures

    Time-resolved mid-infrared dual-comb spectroscopy

    Full text link
    Dual-comb spectroscopy can provide broad spectral bandwidth and high spectral resolution in a short acquisition time, enabling time-resolved measurements. Specifically, spectroscopy in the mid-infrared wavelength range is of particular interest, since most of the molecules have their strongest rotational-vibrational transitions in this "fingerprint" region. Here we report time-resolved mid-infrared dual-comb spectroscopy for the first time, covering ~300 nm bandwidth around 3.3 {\mu}m with 6 GHz spectral resolution and 20 {\mu}s temporal resolution. As a demonstration, we study a CH4/He gas mixture in an electric discharge, while the discharge is modulated between dark and glow regimes. We simultaneously monitor the production of C2H6 and the vibrational excitation of CH4 molecules, observing the dynamics of both processes. This approach to broadband, high-resolution, and time-resolved mid-infrared spectroscopy provides a new tool for monitoring the kinetics of fast chemical reactions, with potential applications in various fields such as physical chemistry and plasma/combustion analysis.Comment: 21 page, 6 figure

    Frequency Comb Assisted Diode Laser Spectroscopy for Measurement of Microcavity Dispersion

    Full text link
    While being invented for precision measurement of single atomic transitions, frequency combs have also become a versatile tool for broadband spectroscopy in the last years. In this paper we present a novel and simple approach for broadband spectroscopy, combining the accuracy of an optical fiber-laser-based frequency comb with the ease-of-use of a tunable external cavity diode laser. This scheme enables broadband and fast spectroscopy of microresonator modes and allows for precise measurements of their dispersion, which is an important precondition for broadband optical frequency comb generation that has recently been demonstrated in these devices. Moreover, we find excellent agreement of measured microresonator dispersion with predicted values from finite element simulations and we show that tailoring microresonator dispersion can be achieved by adjusting their geometrical properties

    Reduced nitric oxide levels during drought stress promote drought tolerance in barley and is associated with elevated polyamine biosynthesis

    Get PDF
    Nitric oxide (NO) is a key messenger in plant stress responses but its exact role in drought response remains unclear. To investigate the role of NO in drought response we employed transgenic barley plants (UHb) overexpressing the barley non-symbiotic hemoglobin gene HvHb1 that oxidizes NO to NO3-. Reduced NO production under drought conditions in UHb plants was associated with increased drought tolerance. Since NO biosynthesis has been related to polyamine metabolism, we investigated whether the observed drought-related NO changes could involve polyamine pathway. UHb plants showed increases in total polyamines and in particular polyamines such as spermidine. These increases correlated with the accumulation of the amino acid precursors of polyamines and with the expression of specific polyamine biosynthesis genes. This suggests a potential interplay between NO and polyamine biosynthesis during drought response. Since ethylene has been linked to NO signaling and it is also related to polyamine metabolism, we explored this connection. In vivo ethylene measurement showed that UHb plants significantly decrease ethylene production and expression of aminocyclopropane-1-carboxylic acid synthase gene, the first committed step in ethylene biosynthesis compared with wild type. These data suggest a NO-ethylene influenced regulatory node in polyamine biosynthesis linked to drought tolerance/susceptibility in barley.publishersversionPeer reviewe

    Structural and functional analyses of the DMC1-M200V polymorphism found in the human population

    Get PDF
    The M200V polymorphism of the human DMC1 protein, which is an essential, meiosis-specific DNA recombinase, was found in an infertile patient, raising the question of whether this homozygous human DMC1-M200V polymorphism may cause infertility by affecting the function of the human DMC1 protein. In the present study, we determined the crystal structure of the human DMC1-M200V variant in the octameric-ring form. Biochemical analyses revealed that the human DMC1-M200V variant had reduced stability, and was moderately defective in catalyzing in vitro recombination reactions. The corresponding M194V mutation introduced in the Schizosaccharomyces pombe dmc1 gene caused a significant decrease in the meiotic homologous recombination frequency. Together, these structural, biochemical and genetic results provide extensive evidence that the human DMC1-M200V mutation impairs its function, supporting the previous interpretation that this single-nucleotide polymorphism is a source of human infertility

    Vegetation in urban streets, squares, and courtyards

    Get PDF
    One of various ways in which vegetation cover used in the greening of urban areas can help improve the health and well-being of people is in how it changes the acoustic environment. This chapter presents findings of computer simulations and scale modelling to examine and quantify the effectiveness of green roof and green wall (vertical garden) systems in reducing road traffic noise for streets, squares, and roadside courtyards. Noise reduction by sound absorption in reflected and diffracted (over roofs) sound paths is investigated. Particular attention is paid to the importance of vegetation placement relative to the receiver/listening positions. Because the soil substrate used for the vertical walls has good sound absorption properties, it also can be used for green barriers. In this chapter, the effects of a low barrier made of green wall substrate are studied for an installation on the ground and on the top of buildings surrounding a courtyard

    Drawing the Line: Basin Boundaries in Safe Petri Nets

    Get PDF
    International audienceAttractors of network dynamics represent the long-term behaviours of the modelled system. Understanding the basin of an attrac-tor, comprising all those states from which the evolution will eventually lead into that attractor, is therefore crucial for understanding the response and differentiation capabilities of a dynamical system. Building on our previous results [2] allowing to find attractors via Petri net Un-foldings, we exploit further the unfolding technique for a backward exploration of the state space, starting from a known attractor, and show how all strong or weak basins of attractions can be explicitly computed
    corecore