30 research outputs found
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector
Data from the AMANDA-B10 detector taken during the austral winter of 1997
have been searched for a diffuse flux of high energy extraterrestrial
muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the
universe. This search yielded no excess events above those expected from the
background atmospheric neutrinos, leading to upper limits on the
extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical
confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x
10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV)
which is the most restrictive bound placed by any neutrino detector. When
specific predicted spectral forms are considered, it is found that some are
excluded.Comment: Submitted to Physical Review Letter
New results from the Antarctic Muon And Neutrino Detector Array
We present recent results from the Antarctic Muon And Neutrino Detector Array
(AMANDA) on searches for high-energy neutrinos of extraterrestrial origin. We
have searched for a diffuse flux of neutrinos, neutrino point sources and
neutrinos from GRBs and from WIMP annihilations in the Sun or the center of the
Earth. We also present a preliminary result on the first energy spectrum above
a few TeV for atmospheric neutrinos.Comment: 8 pages, 8 figures, to be published in Nuclear Physics B (Proceedings
Supplement): Proceedings of the XXIst International Conference on Neutrino
Physics and Astrophysics, Paris, June 14-19, 200
Search for Neutrino-Induced Cascades with AMANDA
We report on a search for electro-magnetic and/or hadronic showers (cascades)
induced by high energy neutrinos in the data collected with the AMANDA II
detector during the year 2000. The observed event rates are consistent with the
expectations for atmospheric neutrinos and muons. We place upper limits on a
diffuse flux of extraterrestrial electron, tau and muon neutrinos. A flux of
neutrinos with a spectrum which consists of an equal mix
of all flavors, is limited to at
a 90% confidence level for a neutrino energy range 50 TeV to 5 PeV. We present
bounds for specific extraterrestrial neutrino flux predictions. Several of
these models are ruled out.Comment: 18 pages, 12 figure
Предварительное исследование применения системы спектрального регулирования для ТВС реактора ВВЭР-1000
Повышение топливных характеристик ядерных реакторов за счет применения концепции управления спектральным сдвигом (SSC) вместо традиционных методов, основанных на поглощении, является многообещающим подходом к снижению стоимости топливного цикла и увеличению использования топливных ресурсов (U, Pu). В данной работе было проведено исследование применения химического метода SSC для модели топливной сборки ВВЭР-1000 с низкообогащенным ураном, в которой контроль реактивности осуществляется путем изменения доли D2O относительно легководного замедлителя (D2O/H2O), и сравнение с поглощающими материалами, в которых содержится 600 ppm H3BO3 и 4,0 мас.% Gd2O3
Flux limits on ultra high energy neutrinos with AMANDA-B10
Abstract Data taken during 1997 with the AMANDA-B10 detector are searched for a diffuse flux of neutrinos of all flavors with energies above 10 16 eV. At these energies the Earth is opaque to neutrinos, and thus neutrino induced events are concentrated at the horizon. The background are large muon bundles from down-going atmospheric air shower events. No excess events above the background expectation are observed and a neutrino flux following E À2 , with an equal mix of all flavors, is limited to E 2 U(10 15 eV < E < 3 · 10 18 eV) 6 0.99 · 10 À6 GeV cm À2 s À1 sr À1 at 90% confidence level. This is the most restrictive experimental bound placed by any neutrino detector at these energies. Bounds to specific extraterrestrial neutrino flux predictions are also presented. Ó 2004 Elsevier B.V. All rights reserved. PACS: 95.55.Vj; 95.85.Ry; 96.40.T
Results from the AMANDA detector
The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope based at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice, which is used as interaction and detection medium. The primary goal of this detector is the observation of astronomical sources of high-energy neutrinos. This paper shows the latest results of the search for a diffuse flux of extraterrestrial \u3bd\u3bcs with energies between 1011 eV and 10 18 eV, \u3bd\u3bcs emitted from point sources and \u3bd\u3bcs from dark matter annihilation in the Earth and the Sun
Results from the AMANDA neutrino telescope
We review recent results from AMANDA on the search for cosmic point sources of neutrinos, both in the diffuse and point-like channels. Assuming a E-2 spectral shape of the neutrino energy at the source, we derive limits on the diffuse \u3bd\u3bc flux as well as in the all-flavour diffuse flux from the cascade search. We report limits on selected point sources as well as on GRB searches. We present results on primary cosmic CR composition in the range 3c100 TeV-PeV obtained with the help of the SPASE air shower array run in coincidence with AMANDA. \ua9 2004 Elsevier B.V. All rights reserved