62 research outputs found

    Exact solution of mean geodesic distance for Vicsek fractals

    Full text link
    The Vicsek fractals are one of the most interesting classes of fractals and the study of their structural properties is important. In this paper, the exact formula for the mean geodesic distance of Vicsek fractals is found. The quantity is computed precisely through the recurrence relations derived from the self-similar structure of the fractals considered. The obtained exact solution exhibits that the mean geodesic distance approximately increases as an exponential function of the number of nodes, with the exponent equal to the reciprocal of the fractal dimension. The closed-form solution is confirmed by extensive numerical calculations.Comment: 4 pages, 3 figure

    Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect

    Full text link
    A vast variety of real-life networks display the ubiquitous presence of scale-free phenomenon and small-world effect, both of which play a significant role in the dynamical processes running on networks. Although various dynamical processes have been investigated in scale-free small-world networks, analytical research about random walks on such networks is much less. In this paper, we will study analytically the scaling of the mean first-passage time (MFPT) for random walks on scale-free small-world networks. To this end, we first map the classical Koch fractal to a network, called Koch network. According to this proposed mapping, we present an iterative algorithm for generating the Koch network, based on which we derive closed-form expressions for the relevant topological features, such as degree distribution, clustering coefficient, average path length, and degree correlations. The obtained solutions show that the Koch network exhibits scale-free behavior and small-world effect. Then, we investigate the standard random walks and trapping issue on the Koch network. Through the recurrence relations derived from the structure of the Koch network, we obtain the exact scaling for the MFPT. We show that in the infinite network order limit, the MFPT grows linearly with the number of all nodes in the network. The obtained analytical results are corroborated by direct extensive numerical calculations. In addition, we also determine the scaling efficiency exponents characterizing random walks on the Koch network.Comment: 12 pages, 8 figures. Definitive version published in Physical Review

    Determining mean first-passage time on a class of treelike regular fractals

    Full text link
    Relatively general techniques for computing mean first-passage time (MFPT) of random walks on networks with a specific property are very useful, since a universal method for calculating MFPT on general graphs is not available because of their complexity and diversity. In this paper, we present techniques for explicitly determining the partial mean first-passage time (PMFPT), i.e., the average of MFPTs to a given target averaged over all possible starting positions, and the entire mean first-passage time (EMFPT), which is the average of MFPTs over all pairs of nodes on regular treelike fractals. We describe the processes with a family of regular fractals with treelike structure. The proposed fractals include the TT fractal and the Peano basin fractal as their special cases. We provide a formula for MFPT between two directly connected nodes in general trees on the basis of which we derive an exact expression for PMFPT to the central node in the fractals. Moreover, we give a technique for calculating EMFPT, which is based on the relationship between characteristic polynomials of the fractals at different generations and avoids the computation of eigenvalues of the characteristic polynomials. Making use of the proposed methods, we obtain analytically the closed-form solutions to PMFPT and EMFPT on the fractals and show how they scale with the number of nodes. In addition, to exhibit the generality of our methods, we also apply them to the Vicsek fractals and the iterative scale-free fractal tree and recover the results previously obtained.Comment: Definitive version published in Physical Review

    Determining global mean-first-passage time of random walks on Vicsek fractals using eigenvalues of Laplacian matrices

    Full text link
    The family of Vicsek fractals is one of the most important and frequently-studied regular fractal classes, and it is of considerable interest to understand the dynamical processes on this treelike fractal family. In this paper, we investigate discrete random walks on the Vicsek fractals, with the aim to obtain the exact solutions to the global mean first-passage time (GMFPT), defined as the average of first-passage time (FPT) between two nodes over the whole family of fractals. Based on the known connections between FPTs, effective resistance, and the eigenvalues of graph Laplacian, we determine implicitly the GMFPT of the Vicsek fractals, which is corroborated by numerical results. The obtained closed-form solution shows that the GMFPT approximately grows as a power-law function with system size (number of all nodes), with the exponent lies between 1 and 2. We then provide both the upper bound and lower bound for GMFPT of general trees, and show that leading behavior of the upper bound is the square of system size and the dominating scaling of the lower bound varies linearly with system size. We also show that the upper bound can be achieved in linear chains and the lower bound can be reached in star graphs. This study provides a comprehensive understanding of random walks on the Vicsek fractals and general treelike networks.Comment: Definitive version accepted for publication in Physical Review
    corecore