3 research outputs found

    New hybrids of tacrine and indomethacin as multifunctional acetylcholinesterase inhibitors

    Get PDF
    A new series of hybrid compounds were designed, consisting of anti-AChE and BuChE activity components with an antiinfammatory component. A series of 9-amino-1,2,3,4-tetrahydroacridine and indomethacin derivatives were synthesized. All compounds were created using alkyldiamine with diferent chain lengths as a linker. Various biological activities were evaluated, including inhibitory activity against AChE and BuChE. The tested compounds showed high inhibitory activities against cholinesterases. The IC50 values for all compounds ranging from 10 nM to 7 µM. The potency of inhibition was much higher than well-known AChE and BuChE inhibitors (tacrine and donepezil). Compound 3h had the strongest inhibitory activity; kinetic studies showed it to have a mixed-type of acetylcholinesterase inhibition properties. The cytotoxicity of the newly-synthesized compounds against HepG2 (hepatocarcinoma cells) and EA.hy96 (human vein endothelial cells) cell lines was determined using the MTT and MTS tests. All investigated compounds presented similar cytotoxic activity against HepG2 and EA.hy926 cell line, ranged in micromolar values. Compounds with longer linkers showed higher antioxidant activity. The most active compound was 3h. Docking studies confrmed interactions with important regions of AChE and BuChE. Its multifunctional properties, i.e. high activity against AChE and BuChE, antioxidant activity and low cytotoxicity, highlight 3h as a promising agent for the treatment of AD

    Synthesis and antimicrobial evaluation of 6-alkylamino-N-phenylpyrazine-2-carboxamides

    No full text
    This work presents synthesis and antimicrobial evaluation of nineteen 6-alkylamino-N-phenylpyrazine-2-carboxamides. Antimycobacterial activity was determined against Mycobacterium tuberculosis H37Rv, M. kansasii and two strains of M. avium. Generally, the antimycobacterial activity increased with prolongation of simple alkyl chain and culminated in compounds with heptylamino substitution (3e, 4e) with MIC = 5-10 μm against M. tuberculosis H37Rv. On the contrary, derivatives with modified alkyl chain (containing e.g. terminal methoxy or hydroxy group) as well as phenylalkylamino derivatives were mainly inactive. The most active compounds (with hexyl to octylamino substitution) were evaluated for their in vitro activity against drug-resistant strains of M. tuberculosis and possessed activity comparable to that of the reference drug isoniazid. None of the tested compounds were active against M. avium. Some derivatives exhibited activity against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (best MIC = 7.8 μm), while Gram-negative strains as well as tested fungal strains were completely unsusceptible. Active compounds were tested for in vitro toxicity on various cell lines and in most cases were non-toxic up to 100 μm.status: publishe
    corecore