63 research outputs found

    Walking With the ISMRM in the Footprints of Our MR History

    Get PDF
    The International Society for Magnetic Resonance in Medicine (ISMRM) has undoubtedly played a central role in helping shape our field. In particular, the annual meetings have been an avenue of choice for presenting new MR methods, tools, and applications of aspects of our field that have greatly impacted and transformed how MR is used today, and those abstracts have become “classic” contributions to our field. In 1994, the ISMRM (or SMR, as it was named at the time) was formed from the joining of the Society for Magnetic Resonance in Medicine (SMRM) and the Society for Magnetic Resonance Imaging (SMRI), which originated in 1982. In those early years, MR was a nascent technology and many of the sequences, analysis tools, and hardware applications we take for granted today had not yet been conceived. Now, as a celebration of the 40th anniversary of these annual meetings, we walk in the “footprints” of the ISMRM and its predecessor Societies: we look back at some of the classic abstracts presented at the annual meetings, reflect on this long history with some of its early members, and report on the Special Session held to celebrate the occasion at the 2022 Annual Meeting in London

    Generalizable synthetic MRI with physics-informed convolutional networks

    Get PDF
    Background: Magnetic resonance imaging (MRI) provides state-of-the-art image quality for neuroimaging, consisting of multiple separately acquired contrasts. Synthetic MRI aims to accelerate examinations by synthesizing any desirable contrast from a single acquisition. Purpose: We developed a physics-informed deep learning-based method to synthesize multiple brain MRI contrasts from a single 5-min acquisition and investigate its ability to generalize to arbitrary contrasts. Methods: A dataset of 55 subjects acquired with a clinical MRI protocol and a 5-min transient-state sequence was used. The model, based on a generative adversarial network, maps data acquired from the five-minute scan to “effective” quantitative parameter maps (q*-maps), feeding the generated PD, T1, and T2 maps into a signal model to synthesize four clinical contrasts (proton density-weighted, T1-weighted, T2-weighted, and T2-weighted fluid-attenuated inversion recovery), from which losses are computed. The synthetic contrasts are compared to an end-to-end deep learning-based method proposed by literature. The generalizability of the proposed method is investigated for five volunteers by synthesizing three contrasts unseen during training and comparing these to ground truth acquisitions via qualitative assessment and contrast-to-noise ratio (CNR) assessment. Results: The physics-informed method matched the quality of the end-to-end method for the four standard contrasts, with structural similarity metrics above (Formula presented.) ((Formula presented.) std), peak signal-to-noise ratios above (Formula presented.), representing a portion of compact lesions comparable to standard MRI. Additionally, the physics-informed method enabled contrast adjustment, and similar signal contrast and comparable CNRs to the ground truth acquisitions for three sequences unseen during model training. Conclusions: The study demonstrated the feasibility of physics-informed, deep learning-based synthetic MRI to generate high-quality contrasts and generalize to contrasts beyond the training data. This technology has the potential to accelerate neuroimaging protocols

    Real-time myocardial landmark tracking for MRI-guided cardiac radio-ablation using Gaussian Processes

    Full text link
    The high speed of cardiorespiratory motion introduces a unique challenge for cardiac stereotactic radio-ablation (STAR) treatments with the MR-linac. Such treatments require tracking myocardial landmarks with a maximum latency of 100 ms, which includes the acquisition of the required data. The aim of this study is to present a new method that allows to track myocardial landmarks from few readouts of MRI data, thereby achieving a latency sufficient for STAR treatments. We present a tracking framework that requires only few readouts of k-space data as input, which can be acquired at least an order of magnitude faster than MR-images. Combined with the real-time tracking speed of a probabilistic machine learning framework called Gaussian Processes, this allows to track myocardial landmarks with a sufficiently low latency for cardiac STAR guidance, including both the acquisition of required data, and the tracking inference. The framework is demonstrated in 2D on a motion phantom, and in vivo on volunteers and a ventricular tachycardia (arrhythmia) patient. Moreover, the feasibility of an extension to 3D was demonstrated by in silico 3D experiments with a digital motion phantom. The framework was compared with template matching - a reference, image-based, method - and linear regression methods. Results indicate an order of magnitude lower total latency (<10 ms) for the proposed framework in comparison with alternative methods. The root-mean-square-distances and mean end-point-distance with the reference tracking method was less than 0.8 mm for all experiments, showing excellent (sub-voxel) agreement. The high accuracy in combination with a total latency of less than 10 ms - including data acquisition and processing - make the proposed method a suitable candidate for tracking during STAR treatments

    Brain Tissue Conductivity Measurements with MR-Electrical Properties Tomography: An In Vivo Study

    Get PDF
    First in vivo brain conductivity reconstructions using Helmholtz MR-Electrical Properties Tomography (MR-EPT) have been published. However, a large variation in the reconstructed conductivity values is reported and these values differ from ex vivo conductivity measurements. Given this lack of agreement, we performed an in vivo study on eight healthy subjects to provide reference in vivo brain conductivity values. MR-EPT reconstructions were performed at 3 T for eight healthy subjects. Mean conductivity and standard deviation values in the white matter, gray matter and cerebrospinal fluid (σWM, σGM, and σCSF) were computed for each subject before and after erosion of regions at tissue boundaries, which are affected by typical MR-EPT reconstruction errors. The obtained values were compared to the reported ex vivo literature values. To benchmark the accuracy of in vivo conductivity reconstructions, the same pipeline was applied to simulated data, which allow knowledge of ground truth conductivity. Provided sufficient boundary erosion, the in vivo σWM and σGM values obtained in this study agree for the first time with literature values measured ex vivo. This could not be verified for the CSF due to its limited spatial extension. Conductivity reconstructions from simulated data verified conductivity reconstructions from in vivo data and demonstrated the importance of discarding voxels at tissue boundaries. The presented σWM and σGM values can therefore be used for comparison in future studies employing different MR-EPT techniques

    Experimental demonstration of real-time cardiac physiology-based radiotherapy gating for improved cardiac radioablation on an MR-linac

    Get PDF
    Background: Cardiac radioablation is a noninvasive stereotactic body radiation therapy (SBRT) technique to treat patients with refractory ventricular tachycardia (VT) by delivering a single high-dose fraction to the VT isthmus. Cardiorespiratory motion induces position uncertainties resulting in decreased dose conformality. Electocardiograms (ECG) are typically used during cardiac MRI (CMR) to acquire images in a predefined cardiac phase, thus mitigating cardiac motion during image acquisition. Purpose: We demonstrate real-time cardiac physiology-based radiotherapy beam gating within a preset cardiac phase on an MR-linac. Methods: MR images were acquired in healthy volunteers (n = 5, mean age = 29.6 years, mean heart-rate (HR) = 56.2 bpm) on the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) after obtaining written informed consent. The images were acquired using a single-slice balance steady-state free precession (bSSFP) sequence in the coronal or sagittal plane (TR/TE = 3/1.48 ms, flip angle = 48 (Formula presented.), SENSE = 1.5, (Formula presented.) (Formula presented.), voxel size = (Formula presented.) (Formula presented.), partial Fourier factor = 0.65, frame rate = 13.3 Hz). In parallel, a 4-lead ECG-signal was acquired using MR-compatible equipment. The feasibility of ECG-based beam gating was demonstrated with a prototype gating workflow using a Quasar MRI4D motion phantom (IBA Quasar, London, ON, Canada), which was deployed in the bore of the MR-linac. Two volunteer-derived combined ECG-motion traces (n = 2, mean age = 26 years, mean HR = 57.4 bpm, peak-to-peak amplitude = 14.7 mm) were programmed into the phantom to mimic dose delivery on a cardiac target in breath-hold. Clinical ECG-equipment was connected to the phantom for ECG-voltage-streaming in real-time using research software. Treatment beam gating was performed in the quiescent phase (end-diastole). System latencies were compensated by delay time correction. A previously developed MRI-based gating workflow was used as a benchmark in this study. A 15-beam intensity-modulated radiotherapy (IMRT) plan ((Formula presented.) Gy) was delivered for different motion scenarios onto radiochromic films. Next, cardiac motion was then estimated at the basal anterolateral myocardial wall via normalized cross-correlation-based template matching. The estimated motion signal was temporally aligned with the ECG-signal, which were then used for position- and ECG-based gating simulations in the cranial–caudal (CC), anterior–posterior (AP), and right–left (RL) directions. The effect of gating was investigated by analyzing the differences in residual motion at 30, 50, and 70% treatment beam duty cycles. Results: ECG-based (MRI-based) beam gating was performed with effective duty cycles of 60.5% (68.8%) and 47.7% (50.4%) with residual motion reductions of 62.5% (44.7%) and 43.9% (59.3%). Local gamma analyses (1%/1 mm) returned pass rates of 97.6% (94.1%) and 90.5% (98.3%) for gated scenarios, which exceed the pass rates of 70.3% and 82.0% for nongated scenarios, respectively. In average, the gating simulations returned maximum residual motion reductions of 88%, 74%, and 81% at 30%, 50%, and 70% duty cycles, respectively, in favor of MRI-based gating. Conclusions: Real-time ECG-based beam gating is a feasible alternative to MRI-based gating, resulting in improved dose delivery in terms of high (Formula presented.) rates, decreased dose deposition outside the PTV and residual motion reduction, while by-passing cardiac MRI challenges

    Brain and Head-and-Neck MRI in Immobilization Mask: A Practical Solution for MR-Only Radiotherapy

    Get PDF
    In brain/head-and-neck radiotherapy (RT), thermoplastic immobilization masks guarantee reproducible patient positioning in treatment position between MRI, CT, and irradiation. Since immobilization masks do not fit in the diagnostic MR head/head-and-neck coils, flexible surface coils are used for MRI imaging in clinical practice. These coils are placed around the head/neck, in contact with the immobilization masks. However, the positioning of these flexible coils is technician dependent, thus leading to poor image reproducibility. Additionally, flexible surface coils have an inferior signal-to-noise-ratio (SNR) compared to diagnostic coils. The aim of this work was to create a new immobilization setup which fits into the diagnostic MR coils in order to enhance MR image quality and reproducibility. For this purpose, a practical immobilization setup was constructed. The performances of the standard clinical and the proposed setups were compared with four tests: SNR, image quality, motion restriction, and reproducibility of inter-fraction subject positioning. The new immobilization setup resulted in 3.4 times higher SNR values on average than the standard setup, except directly below the flexible surface coils where similar SNR was observed. Overall, the image quality was superior for brain/head-and-neck images acquired with the proposed RT setup. Comparable motion restriction in feet-head/left-right directions (maximum motion ≈1 mm) and comparable inter-fraction repositioning accuracy (mean inter-fraction movement 1 ± 0.5 mm) were observed for the standard and the new setup
    • 

    corecore