5,964 research outputs found
Transform-Limited-Pulse Representation of Excitation with Natural Incoherent Light
We study the natural excitation of molecular systems, applicable to, for
example, photosynthetic light-harvesting complexes, by natural incoherent
light. In contrast with the conventional classical models, we show that the
light need not have random character to properly represent the resultant linear
excitation. Rather, thermal excitation can be interpreted as a collection of
individual events resulting from the system's interaction with individual,
deterministic pulsed realizations that constitute the field. The derived
expressions for the individual field realizations and excitation events allow
for a wave function formalism, and therefore constitute a useful calculational
tool to study dynamics following thermal-light excitation. Further, they
provide a route to the experimental determination of natural incoherent
excitation using pulsed laser techniques.Comment: 5 pages, 3 figures, 1 page supplementary information. Comments
welcom
Nonclassicality of a photon-subtracted Gaussian field
Published versio
Quantum Bayesian methods and subsequent measurements
After a derivation of the quantum Bayes theorem, and a discussion of the
reconstruction of the unknown state of identical spin systems by repeated
measurements, the main part of this paper treats the problem of determining the
unknown phase difference of two coherent sources by photon measurements. While
the approach of this paper is based on computing correlations of actual
measurements (photon detections), it is possible to derive indirectly a
probability distribution for the phase difference. In this approach, the
quantum phase is not an observable, but a parameter of an unknown quantum
state. Photon measurements determine a probability distribution for the phase
difference. The approach used in this paper takes into account both photon
statistics and the finite efficiency of the detectors.Comment: Expanded and corrected version. 13 pages, 1 figur
Quantum random walk of two photons in separable and entangled state
We discuss quantum random walk of two photons using linear optical elements.
We analyze the quantum random walk using photons in a variety of quantum states
including entangled states. We find that for photons initially in separable
Fock states, the final state is entangled. For polarization entangled photons
produced by type II downconverter, we calculate the joint probability of
detecting two photons at a given site. We show the remarkable dependence of the
two photon detection probability on the quantum nature of the state. In order
to understand the quantum random walk, we present exact analytical results for
small number of steps like five. We present in details numerical results for a
number of cases and supplement the numerical results with asymptotic analytical
results
Directory of aerospace safety specialized information sources
Directory aids safety specialists in locating information sources and individual experts in engineering-related fields. Lists 170 organizations and approximately 300 individuals who can provide safety-related technical information in form of documentation, data, and consulting expertise. Information on hazard and failure cause identification, accident analysis, and materials characteristics are covered
Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields
In the previous paper [M. Tsang, Phys. Rev. A 81, 063837 (2010), e-print
arXiv:1003.0116], I proposed a quantum model of a cavity electro-optic
modulator, which can coherently couple an optical cavity mode to a microwave
resonator mode and enable novel quantum operations on the two modes, including
laser cooling of the microwave mode, electro-optic entanglement, and
backaction-evading optical measurement of a microwave quadrature. In this
sequel, I focus on the quantum input-output relations between traveling optical
and microwave fields coupled to a cavity electro-optic modulator. With
red-sideband optical pumping, the relations are shown to resemble those of a
beam splitter for the traveling fields, so that in the ideal case of zero
parasitic loss and critical coupling, microwave photons can be coherently
up-converted to "flying" optical photons with unit efficiency, and vice versa.
With blue-sideband pumping, the modulator acts as a nondegenerate parametric
amplifier, which can generate two-mode squeezing and hybrid entangled photon
pairs at optical and microwave frequencies. These fundamental operations
provide a potential bridge between circuit quantum electrodynamics and quantum
optics.Comment: 12 pages, 10 figures, v2: updated and submitte
Microwave Photon Detector in Circuit QED
Quantum optical photodetection has occupied a central role in understanding
radiation-matter interactions. It has also contributed to the development of
atomic physics and quantum optics, including applications to metrology,
spectroscopy, and quantum information processing. The quantum microwave regime,
originally explored using cavities and atoms, is seeing a novel boost with the
generation of nonclassical propagating fields in circuit quantum
electrodynamics (QED). This promising field, involving potential developments
in quantum information with microwave photons, suffers from the absence of
photodetectors. Here, we design a metamaterial composed of discrete
superconducting elements that implements a high-efficiency microwave photon
detector. Our design consists of a microwave guide coupled to an array of
metastable quantum circuits, whose internal states are irreversibly changed due
to the absorption of photons. This proposal can be widely applied to different
physical systems and can be generalized to implement a microwave photon
counter.Comment: accepted in Phys. Rev. Let
Fluctuations in the formation time of ultracold dimers from fermionic atoms
We investigate the temporal fluctuations characteristic of the formation of
molecular dimers from ultracold fermionic atoms via Raman photoassociation. The
quantum fluctuations inherent to the initial atomic state result in large
fluctuations in the passage time from atoms to molecules. Assuming degeneracy
of kinetic energies of atoms in the strong coupling limit we find that a
heuristic classical stochastic model yields qualitative agreement with the full
quantum treatment in the initial stages of the dynamics. We also show that in
contrast to the association of atoms into dimers, the reverse process of
dissociation from a condensate of bosonic dimers exhibits little passage time
fluctuations. Finally we explore effects due to the non-degeneracy of atomic
kinetic energies.Comment: 7 pages, 6 figure
Quantum Non-Demolition Test of Bipartite Complementarity
We present a quantum circuit that implements a non-demolition measurement of
complementary single- and bi-partite properties of a two-qubit system:
entanglement and single-partite visibility and predictability. The system must
be in a pure state with real coefficients in the computational basis, which
allows a direct operational interpretation of those properties. The circuit can
be realized in many systems of interest to quantum information.Comment: 4 pages, 2 figure
Quantum state transfer via temporal kicking of information
We propose a strategy for perfect state transfer in spin chains based on the
use of an unmodulated coupling Hamiltonian whose coefficients are explicitly
time dependent. We show that, if specific and non-demanding conditions are
satisfied by the temporal behavior of the coupling strengths, our model allows
perfect state transfer. The paradigma put forward by our proposal holds the
promises to set an alternative standard to the use of clever encoding and
coupling-strength engineering for perfect state transfer.Comment: 7 pages, 7 figures, RevTeX
- …