6,406 research outputs found

    BDDC and FETI-DP under Minimalist Assumptions

    Full text link
    The FETI-DP, BDDC and P-FETI-DP preconditioners are derived in a particulary simple abstract form. It is shown that their properties can be obtained from only on a very small set of algebraic assumptions. The presentation is purely algebraic and it does not use any particular definition of method components, such as substructures and coarse degrees of freedom. It is then shown that P-FETI-DP and BDDC are in fact the same. The FETI-DP and the BDDC preconditioned operators are of the same algebraic form, and the standard condition number bound carries over to arbitrary abstract operators of this form. The equality of eigenvalues of BDDC and FETI-DP also holds in the minimalist abstract setting. The abstract framework is explained on a standard substructuring example.Comment: 11 pages, 1 figure, also available at http://www-math.cudenver.edu/ccm/reports

    Report on the first round of the Mock LISA Data Challenges

    Get PDF
    The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data analysis tools and capabilities, and demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data output. The first round of MLDCs has just been completed: nine challenges consisting of data sets containing simulated gravitational-wave signals produced either by galactic binaries or massive black hole binaries embedded in simulated LISA instrumental noise were released in June 2006 with deadline for submission of results at the beginning of December 2006. Ten groups have participated in this first round of challenges. All of the challenges had at least one entry which successfully characterized the signal to better than 95% when assessed via a correlation with phasing ambiguities accounted for. Here, we describe the challenges, summarize the results and provide a first critical assessment of the entries

    Gaussian-State Theory of Two-Photon Imaging

    Full text link
    Biphoton states of signal and idler fields--obtained from spontaneous parametric downconversion (SPDC) in the low-brightness, low-flux regime--have been utilized in several quantum imaging configurations to exceed the resolution performance of conventional imagers that employ coherent-state or thermal light. Recent work--using the full Gaussian-state description of SPDC--has shown that the same resolution performance seen in quantum optical coherence tomography and the same imaging characteristics found in quantum ghost imaging can be realized by classical-state imagers that make use of phase-sensitive cross correlations. This paper extends the Gaussian-state analysis to two additional biphoton-state quantum imaging scenarios: far field diffraction-pattern imaging; and broadband thin-lens imaging. It is shown that the spatial resolution behavior in both cases is controlled by the nonzero phase-sensitive cross correlation between the signal and idler fields. Thus, the same resolution can be achieved in these two configurations with classical-state signal and idler fields possessing a nonzero phase-sensitive cross correlation.Comment: 14 pages, 5 figure

    Space-frequency correlation of classical waves in disordered media: high-frequency and small scale asymptotics

    Full text link
    Two-frequency radiative transfer (2f-RT) theory is developed for geometrical optics in random media. The space-frequency correlation is described by the two-frequency Wigner distribution (2f-WD) which satisfies a closed form equation, the two-frequency Wigner-Moyal equation. In the RT regime it is proved rigorously that 2f-WD satisfies a Fokker-Planck-like equation with complex-valued coefficients. By dimensional analysis 2f-RT equation yields the scaling behavior of three physical parameters: the spatial spread, the coherence length and the coherence bandwidth. The sub-transport-mean-free-path behavior is obtained in a closed form by analytically solving a paraxial 2f-RT equation

    On the influence of resonance photon scattering on atom interference

    Get PDF
    Here, the influence of resonance photon-atom scattering on the atom interference pattern at the exit of a three-grating Mach-Zehnder interferometer is studied. It is assumed that the scattering process does not destroy the atomic wave function describing the state of the atom before the scattering process takes place, but only induces a certain shift and change of its phase. We find that the visibility of the interference strongly depends on the statistical distribution of transferred momenta to the atom during the photon-atom scattering event. This also explains the experimentally observed (Chapman et al 1995 Phys. Rev. Lett. 75 2783) dependence of the visibility on the ratio d_p/\lambda_i = y'_{12} (2\pi/kd\lambda_i), where y'_{12} is distance between the place where the scattering event occurs and the first grating, k is the wave number of the atomic center-of-mass motion, dd is the grating constant and \lambda_i is the photon wavelength. Furthermore, it is remarkable that photon-atom scattering events happen experimentally within the Fresnel region, i.e. the near field region, associated with the first grating, which should be taken into account when drawing conclusions about the relevance of "which-way" information for the interference visibility.Comment: 9 pages, 1 figur

    Coherence loss and revivals in atomic interferometry: A quantum-recoil analysis

    Full text link
    The coherence effects induced by external photons coupled to matter waves inside a Mach-Zehnder three-grating interferometer are analyzed. Alternatively to atom-photon entanglement scenarios, the model considered here only relies on the atomic wave function and the momentum shift induced in it by the photon scattering events. A functional dependence is thus found between the observables, namely the fringe visibility and the phase shift, and the transversal momentum transfer distribution. A good quantitative agreement is found when comparing the results obtained from our model with the experimental data.Comment: 18 pages, 4 figure

    Quantum interference of electromagnetic fields from remote quantum memories

    Get PDF
    We observe quantum, Hong-Ou-Mandel, interference of fields produced by two remote atomic memories. High-visibility interference is obtained by utilizing the finite atomic memory time in four-photon delayed coincidence measurements. Interference of fields from remote atomic memories is a crucial element in protocols for scalable generation of multi-node remote qubit entanglement.Comment: 4 pages, 3 figure

    A versatile source of polarization-entangled photons

    Full text link
    We propose a method for the generation of a large variety of entangled states, encoded in the polarization degrees of freedom of N photons, within the same experimental setup. Starting with uncorrelated photons, emitted from N arbitrary single photon sources, and using linear optical tools only, we demonstrate the creation of all symmetric states, e.g., GHZ- and W-states, as well as all symmetric and non-symmetric total angular momentum eigenstates of the N qubit compound.Comment: 4 pages, 3 figure
    corecore