6,406 research outputs found
BDDC and FETI-DP under Minimalist Assumptions
The FETI-DP, BDDC and P-FETI-DP preconditioners are derived in a particulary
simple abstract form. It is shown that their properties can be obtained from
only on a very small set of algebraic assumptions. The presentation is purely
algebraic and it does not use any particular definition of method components,
such as substructures and coarse degrees of freedom. It is then shown that
P-FETI-DP and BDDC are in fact the same. The FETI-DP and the BDDC
preconditioned operators are of the same algebraic form, and the standard
condition number bound carries over to arbitrary abstract operators of this
form. The equality of eigenvalues of BDDC and FETI-DP also holds in the
minimalist abstract setting. The abstract framework is explained on a standard
substructuring example.Comment: 11 pages, 1 figure, also available at
http://www-math.cudenver.edu/ccm/reports
Report on the first round of the Mock LISA Data Challenges
The Mock LISA Data Challenges (MLDCs) have the dual purpose of fostering the development of LISA data analysis tools and capabilities, and demonstrating the technical readiness already achieved by the gravitational-wave community in distilling a rich science payoff from the LISA data output. The first round of MLDCs has just been completed: nine challenges consisting of data sets containing simulated gravitational-wave signals produced either by galactic binaries or massive black hole binaries embedded in simulated LISA instrumental noise were released in June 2006 with deadline for submission of results at the beginning of December 2006. Ten groups have participated in this first round of challenges. All of the challenges had at least one entry which successfully characterized the signal to better than 95% when assessed via a correlation with phasing ambiguities accounted for. Here, we describe the challenges, summarize the results and provide a first critical assessment of the entries
Gaussian-State Theory of Two-Photon Imaging
Biphoton states of signal and idler fields--obtained from spontaneous
parametric downconversion (SPDC) in the low-brightness, low-flux regime--have
been utilized in several quantum imaging configurations to exceed the
resolution performance of conventional imagers that employ coherent-state or
thermal light. Recent work--using the full Gaussian-state description of
SPDC--has shown that the same resolution performance seen in quantum optical
coherence tomography and the same imaging characteristics found in quantum
ghost imaging can be realized by classical-state imagers that make use of
phase-sensitive cross correlations. This paper extends the Gaussian-state
analysis to two additional biphoton-state quantum imaging scenarios: far field
diffraction-pattern imaging; and broadband thin-lens imaging. It is shown that
the spatial resolution behavior in both cases is controlled by the nonzero
phase-sensitive cross correlation between the signal and idler fields. Thus,
the same resolution can be achieved in these two configurations with
classical-state signal and idler fields possessing a nonzero phase-sensitive
cross correlation.Comment: 14 pages, 5 figure
Space-frequency correlation of classical waves in disordered media: high-frequency and small scale asymptotics
Two-frequency radiative transfer (2f-RT) theory is developed for geometrical
optics in random media. The space-frequency correlation is described by the
two-frequency Wigner distribution (2f-WD) which satisfies a closed form
equation, the two-frequency Wigner-Moyal equation. In the RT regime it is
proved rigorously that 2f-WD satisfies a Fokker-Planck-like equation with
complex-valued coefficients. By dimensional analysis 2f-RT equation yields the
scaling behavior of three physical parameters: the spatial spread, the
coherence length and the coherence bandwidth. The sub-transport-mean-free-path
behavior is obtained in a closed form by analytically solving a paraxial 2f-RT
equation
On the influence of resonance photon scattering on atom interference
Here, the influence of resonance photon-atom scattering on the atom
interference pattern at the exit of a three-grating Mach-Zehnder interferometer
is studied. It is assumed that the scattering process does not destroy the
atomic wave function describing the state of the atom before the scattering
process takes place, but only induces a certain shift and change of its phase.
We find that the visibility of the interference strongly depends on the
statistical distribution of transferred momenta to the atom during the
photon-atom scattering event. This also explains the experimentally observed
(Chapman et al 1995 Phys. Rev. Lett. 75 2783) dependence of the visibility on
the ratio d_p/\lambda_i = y'_{12} (2\pi/kd\lambda_i), where y'_{12} is distance
between the place where the scattering event occurs and the first grating, k is
the wave number of the atomic center-of-mass motion, is the grating
constant and \lambda_i is the photon wavelength. Furthermore, it is remarkable
that photon-atom scattering events happen experimentally within the Fresnel
region, i.e. the near field region, associated with the first grating, which
should be taken into account when drawing conclusions about the relevance of
"which-way" information for the interference visibility.Comment: 9 pages, 1 figur
Coherence loss and revivals in atomic interferometry: A quantum-recoil analysis
The coherence effects induced by external photons coupled to matter waves
inside a Mach-Zehnder three-grating interferometer are analyzed. Alternatively
to atom-photon entanglement scenarios, the model considered here only relies on
the atomic wave function and the momentum shift induced in it by the photon
scattering events. A functional dependence is thus found between the
observables, namely the fringe visibility and the phase shift, and the
transversal momentum transfer distribution. A good quantitative agreement is
found when comparing the results obtained from our model with the experimental
data.Comment: 18 pages, 4 figure
Quantum interference of electromagnetic fields from remote quantum memories
We observe quantum, Hong-Ou-Mandel, interference of fields produced by two
remote atomic memories. High-visibility interference is obtained by utilizing
the finite atomic memory time in four-photon delayed coincidence measurements.
Interference of fields from remote atomic memories is a crucial element in
protocols for scalable generation of multi-node remote qubit entanglement.Comment: 4 pages, 3 figure
A versatile source of polarization-entangled photons
We propose a method for the generation of a large variety of entangled
states, encoded in the polarization degrees of freedom of N photons, within the
same experimental setup. Starting with uncorrelated photons, emitted from N
arbitrary single photon sources, and using linear optical tools only, we
demonstrate the creation of all symmetric states, e.g., GHZ- and W-states, as
well as all symmetric and non-symmetric total angular momentum eigenstates of
the N qubit compound.Comment: 4 pages, 3 figure
- …