160 research outputs found
Design of Ad Hoc Wireless Mesh Networks Formed by Unmanned Aerial Vehicles with Advanced Mechanical Automation
Ad hoc wireless mesh networks formed by unmanned aerial vehicles (UAVs)
equipped with wireless transceivers (access points (APs)) are increasingly
being touted as being able to provide a flexible "on-the-fly" communications
infrastructure that can collect and transmit sensor data from sensors in
remote, wilderness, or disaster-hit areas. Recent advances in the mechanical
automation of UAVs have resulted in separable APs and replaceable batteries
that can be carried by UAVs and placed at arbitrary locations in the field.
These advanced mechanized UAV mesh networks pose interesting questions in terms
of the design of the network architecture and the optimal UAV scheduling
algorithms. This paper studies a range of network architectures that depend on
the mechanized automation (AP separation and battery replacement) capabilities
of UAVs and proposes heuristic UAV scheduling algorithms for each network
architecture, which are benchmarked against optimal designs.Comment: 12 page
Optimal Resource Allocation and Relay Selection in Bandwidth Exchange Based Cooperative Forwarding
In this paper, we investigate joint optimal relay selection and resource
allocation under bandwidth exchange (BE) enabled incentivized cooperative
forwarding in wireless networks. We consider an autonomous network where N
nodes transmit data in the uplink to an access point (AP) / base station (BS).
We consider the scenario where each node gets an initial amount (equal, optimal
based on direct path or arbitrary) of bandwidth, and uses this bandwidth as a
flexible incentive for two hop relaying. We focus on alpha-fair network utility
maximization (NUM) and outage reduction in this environment. Our contribution
is two-fold. First, we propose an incentivized forwarding based resource
allocation algorithm which maximizes the global utility while preserving the
initial utility of each cooperative node. Second, defining the link weight of
each relay pair as the utility gain due to cooperation (over noncooperation),
we show that the optimal relay selection in alpha-fair NUM reduces to the
maximum weighted matching (MWM) problem in a non-bipartite graph. Numerical
results show that the proposed algorithms provide 20- 25% gain in spectral
efficiency and 90-98% reduction in outage probability.Comment: 8 pages, 7 figure
Coalitions in Cooperative Wireless Networks
Cooperation between rational users in wireless networks is studied using
coalitional game theory. Using the rate achieved by a user as its utility, it
is shown that the stable coalition structure, i.e., set of coalitions from
which users have no incentives to defect, depends on the manner in which the
rate gains are apportioned among the cooperating users. Specifically, the
stability of the grand coalition (GC), i.e., the coalition of all users, is
studied. Transmitter and receiver cooperation in an interference channel (IC)
are studied as illustrative cooperative models to determine the stable
coalitions for both flexible (transferable) and fixed (non-transferable)
apportioning schemes. It is shown that the stable sum-rate optimal coalition
when only receivers cooperate by jointly decoding (transferable) is the GC. The
stability of the GC depends on the detector when receivers cooperate using
linear multiuser detectors (non-transferable). Transmitter cooperation is
studied assuming that all receivers cooperate perfectly and that users outside
a coalition act as jammers. The stability of the GC is studied for both the
case of perfectly cooperating transmitters (transferrable) and under a partial
decode-and-forward strategy (non-transferable). In both cases, the stability is
shown to depend on the channel gains and the transmitter jamming strengths.Comment: To appear in the IEEE Journal on Selected Areas in Communication,
Special Issue on Game Theory in Communication Systems, 200
Cellular Systems with Many Antennas: Large System Analysis under Pilot Contamination
Base stations with a large number of transmit antennas have the potential to
serve a large number of users simultaneously at higher rates. They also promise
a lower power consumption due to coherent combining at the receiver. However,
the receiver processing in the uplink relies on the channel estimates which are
known to suffer from pilot interference. In this work, we perform an uplink
large system analysis of multi-cell multi-antenna system when the receiver
employs a matched filtering with a pilot contaminated estimate. We find the
asymptotic Signal to Interference plus Noise Ratio (SINR) as the number of
antennas and number of users per base station grow large while maintaining a
fixed ratio. To do this, we make use of the similarity of the uplink received
signal in a multi-antenna system to the representation of the received signal
in CDMA systems. The asymptotic SINR expression explicitly captures the effect
of pilot contamination and that of interference averaging. This also explains
the SINR performance of receiver processing schemes at different regimes such
as instances when the number of antennas are comparable to number of users as
well as when antennas exceed greatly the number of users. Finally, we also
propose that the adaptive MMSE symbol detection scheme, which does not require
the explicit channel knowledge, can be employed for cellular systems with large
number of antennas.Comment: 5 pages, 4 figure
- …