160 research outputs found

    Design of Ad Hoc Wireless Mesh Networks Formed by Unmanned Aerial Vehicles with Advanced Mechanical Automation

    Get PDF
    Ad hoc wireless mesh networks formed by unmanned aerial vehicles (UAVs) equipped with wireless transceivers (access points (APs)) are increasingly being touted as being able to provide a flexible "on-the-fly" communications infrastructure that can collect and transmit sensor data from sensors in remote, wilderness, or disaster-hit areas. Recent advances in the mechanical automation of UAVs have resulted in separable APs and replaceable batteries that can be carried by UAVs and placed at arbitrary locations in the field. These advanced mechanized UAV mesh networks pose interesting questions in terms of the design of the network architecture and the optimal UAV scheduling algorithms. This paper studies a range of network architectures that depend on the mechanized automation (AP separation and battery replacement) capabilities of UAVs and proposes heuristic UAV scheduling algorithms for each network architecture, which are benchmarked against optimal designs.Comment: 12 page

    Optimal Resource Allocation and Relay Selection in Bandwidth Exchange Based Cooperative Forwarding

    Full text link
    In this paper, we investigate joint optimal relay selection and resource allocation under bandwidth exchange (BE) enabled incentivized cooperative forwarding in wireless networks. We consider an autonomous network where N nodes transmit data in the uplink to an access point (AP) / base station (BS). We consider the scenario where each node gets an initial amount (equal, optimal based on direct path or arbitrary) of bandwidth, and uses this bandwidth as a flexible incentive for two hop relaying. We focus on alpha-fair network utility maximization (NUM) and outage reduction in this environment. Our contribution is two-fold. First, we propose an incentivized forwarding based resource allocation algorithm which maximizes the global utility while preserving the initial utility of each cooperative node. Second, defining the link weight of each relay pair as the utility gain due to cooperation (over noncooperation), we show that the optimal relay selection in alpha-fair NUM reduces to the maximum weighted matching (MWM) problem in a non-bipartite graph. Numerical results show that the proposed algorithms provide 20- 25% gain in spectral efficiency and 90-98% reduction in outage probability.Comment: 8 pages, 7 figure

    Coalitions in Cooperative Wireless Networks

    Full text link
    Cooperation between rational users in wireless networks is studied using coalitional game theory. Using the rate achieved by a user as its utility, it is shown that the stable coalition structure, i.e., set of coalitions from which users have no incentives to defect, depends on the manner in which the rate gains are apportioned among the cooperating users. Specifically, the stability of the grand coalition (GC), i.e., the coalition of all users, is studied. Transmitter and receiver cooperation in an interference channel (IC) are studied as illustrative cooperative models to determine the stable coalitions for both flexible (transferable) and fixed (non-transferable) apportioning schemes. It is shown that the stable sum-rate optimal coalition when only receivers cooperate by jointly decoding (transferable) is the GC. The stability of the GC depends on the detector when receivers cooperate using linear multiuser detectors (non-transferable). Transmitter cooperation is studied assuming that all receivers cooperate perfectly and that users outside a coalition act as jammers. The stability of the GC is studied for both the case of perfectly cooperating transmitters (transferrable) and under a partial decode-and-forward strategy (non-transferable). In both cases, the stability is shown to depend on the channel gains and the transmitter jamming strengths.Comment: To appear in the IEEE Journal on Selected Areas in Communication, Special Issue on Game Theory in Communication Systems, 200

    Cellular Systems with Many Antennas: Large System Analysis under Pilot Contamination

    Full text link
    Base stations with a large number of transmit antennas have the potential to serve a large number of users simultaneously at higher rates. They also promise a lower power consumption due to coherent combining at the receiver. However, the receiver processing in the uplink relies on the channel estimates which are known to suffer from pilot interference. In this work, we perform an uplink large system analysis of multi-cell multi-antenna system when the receiver employs a matched filtering with a pilot contaminated estimate. We find the asymptotic Signal to Interference plus Noise Ratio (SINR) as the number of antennas and number of users per base station grow large while maintaining a fixed ratio. To do this, we make use of the similarity of the uplink received signal in a multi-antenna system to the representation of the received signal in CDMA systems. The asymptotic SINR expression explicitly captures the effect of pilot contamination and that of interference averaging. This also explains the SINR performance of receiver processing schemes at different regimes such as instances when the number of antennas are comparable to number of users as well as when antennas exceed greatly the number of users. Finally, we also propose that the adaptive MMSE symbol detection scheme, which does not require the explicit channel knowledge, can be employed for cellular systems with large number of antennas.Comment: 5 pages, 4 figure
    corecore