6 research outputs found

    Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria

    Get PDF
    AbstractRiboswitches are metabolite binding domains within certain messenger RNAs that serve as precision sensors for their corresponding targets. Allosteric rearrangement of mRNA structure is mediated by ligand binding, and this results in modulation of gene expression. We have identified a class of riboswitches that selectively recognizes guanine and becomes saturated at concentrations as low as 5 nM. In Bacillus subtilis, this mRNA motif is located on at least five separate transcriptional units that together encode 17 genes that are mostly involved in purine transport and purine nucleotide biosynthesis. Our findings provide further examples of mRNAs that sense metabolites and that control gene expression without the need for protein factors. Furthermore, it is now apparent that riboswitches contribute to the regulation of numerous fundamental metabolic pathways in certain bacteria

    Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria

    Get PDF
    BACKGROUND: Riboswitches are RNA elements in the 5' untranslated leaders of bacterial mRNAs that directly sense the levels of specific metabolites with a structurally conserved aptamer domain to regulate expression of downstream genes. Riboswitches are most common in the genomes of low GC Gram-positive bacteria (for example, Bacillus subtilis contains examples of all known riboswitches), and some riboswitch classes seem to be restricted to this group. RESULTS: We used comparative sequence analysis and structural probing to identify five RNA elements (serC, speF, suhB, ybhL, and metA) that reside in the intergenic regions of Agrobacterium tumefaciens and many other α-proteobacteria. One of these, the metA motif, is found upstream of methionine biosynthesis genes and binds S-adenosylmethionine (SAM). This natural aptamer most likely functions as a SAM riboswitch (SAM-II) with a consensus sequence and structure that is distinct from the class of SAM riboswitches (SAM-I) predominantly found in Gram-positive bacteria. The minimal functional SAM-II aptamer consists of fewer than 70 nucleotides, which form a single stem and a pseudoknot. Despite its simple architecture and lower affinity for SAM, the SAM-II aptamer strongly discriminates against related compounds. CONCLUSION: SAM-II is the only metabolite-binding riboswitch class identified so far that is not found in Gram-positive bacteria, and its existence demonstrates that biological systems can use multiple RNA structures to sense a single chemical compound. The two SAM riboswitches might be 'RNA World' relics that were selectively retained in certain bacterial lineages or new motifs that have emerged since the divergence of the major bacterial groups
    corecore