190 research outputs found
Expression levels of HMGA2 in adipocytic tumors correlate with morphologic and cytogenetic subgroups
Background: The HMGA2 gene encodes a protein that alters chromatin structure. Deregulation, typically through chromosomal rearrangements, of HMGA2 has an important role in the development of several mesenchymal neoplasms. These rearrangements result in the expression of a truncated protein lacking the acidic C-terminus, a fusion protein consisting of the AT-hook domains encoded by exons 1-3 and parts from another gene, or a full-length protein; loss of binding sites for regulatory microRNA molecules from the 3' untranslated region (UTR) of HMGA2 has been suggested to be a common denominator.Methods: Seventy adipocytic tumors, representing different morphologic and cytogenetic subgroups, were analyzed by qRT-PCR to study the expression status of HMGA2; 18 of these tumors were further examined by PCR to search for mutations or deletions in the 3'UTR.Results: Type (full-length or truncated) and level of expression varied with morphology and karyotype, with the highest levels in atypical lipomatous tumors and lipomas with rearrangements of 12q13-15 and the lowest in lipomas with 6p- or 13q-rearrangements, hibernomas, spindle cell lipomas and myxoid liposarcomas. All 18 examined tumors showed reduced or absent expression of the entire, or parts of, the 3'UTR, which was not due to mutations at the DNA level.Conclusion: In adipocytic tumors with deregulated HMGA2 expression, the 3'UTR is consistently lost, either due to physical disruption of HMGA2 or a shift to production of shorter 3'UTR
GLI1 (glioma-associated oncogene homolog 1)
Review on GLI1 (glioma-associated oncogene homolog 1), with data on DNA, on the protein encoded, and where the gene is implicated
Soft tissue tumors: Low grade fibromyxoid sarcoma
Review on Soft tissue tumors: Low grade fibromyxoid sarcoma, with data on clinics, and the genes involved
Soft tissue tumors: Pericytoma with t(7;12)
Review on Soft tissue tumors: Pericytoma with t(7;12), with data on clinics, and the genes involved
ACTB (actin, beta)
Review on ACTB (actin, beta), with data on DNA, on the protein encoded, and where the gene is implicated
Centrosomal abnormalities, multipolar mitoses, and chromosomal instability in head and neck tumours with dysfunctional telomeres
Carcinomas of the head and neck typically exhibit complex chromosome aberrations but the underlying mutational mechanisms remain obscure. Evaluation of cell division dynamics in low-passage cell lines from three benign and five malignant head and neck tumours revealed a strong positive correlation between multipolarity of the mitotic spindle and the formation of bridges at anaphase in both benign and malignant tumours. Cells exhibiting a high rate of mitotic abnormalities also showed several chromosome termini lacking TTAGGG repeats and a high frequency of dicentric chromosomes. Multicolour karyotyping demonstrated a preferential involvement in structural rearrangements of chromosomes with deficient telomeres. The majority of malignant, mitotically unstable tumours expressed the reverse transcriptase subunit of telomerase. These data indicate that some of the genomic instability in head and neck tumours is initiated by telomere dysfunction, leading to the formation of dicentric chromosomes. These form chromosome bridges at mitosis that could prevent the normal anaphase-telophase transition. In turn, this may cause an accumulation of centrosomes and mitotic multipolarity. Telomerase expression does not confer total stability to the tumour genome but could be crucial for moderating the rate of chromosomal evolution
- …