6 research outputs found

    Ein implantierbares Telemetriesystem zur Impedanzspektroskopie

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugĂ€nglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Die kontinuierliche Überwachung des intrakorporalen Zustandes von Geweben beispielsweise zur Erkennung ischĂ€mischer VorgĂ€nge nach gefĂ€ĂŸchirurgischen Eingriffen oder im Rahmen der Rejektionsdiagnostik lĂ€ĂŸt sich durch bisher vorhandene Meßsysteme nur bedingt erreichen. Speziell die direkte Erfassung sensitiver Gewebeparameter ĂŒber einen lĂ€ngeren Zeitraum ohne Belastung fĂŒr den Patienten stellt in diesem Zusammenhang ein Problem dar. In der nachfolgenden Arbeit wird das Konzept eines implantierbaren Telemetriesystems vorgestellt, das die Bewertung des Gewebezustandes ĂŒber die Messung der frequenzabhĂ€ngigen Bioimpedanz ermöglicht. Besondere Beachtung wird der Auslegung und Umsetzung der einzelnen Systemkomponenten sowie der Vorstellung erster in vitro Messungen zur Evaluierung des Meßsystems geschenkt

    On the Capability of Artificial Neural Networks to Compensate Nonlinearities in Wavelength Sensing

    Get PDF
    An intelligent sensor for light wavelength readout, suitable for visible range optical applications, has been developed. Using buried triple photo-junction as basic pixel sensing element in combination with artificial neural network (ANN), the wavelength readout with a full-scale error of less than 1.5% over the range of 400 to 780 nm can be achieved. Through this work, the applicability of the ANN approach in optical sensing is investigated and compared with conventional methods, and a good compromise between accuracy and the possibility for on-chip implementation was thus found. Indeed, this technique can serve different purposes and may replace conventional methods

    An Enhanced Technique for Ultrasonic Flow Metering Featuring Very Low Jitter and Offset

    No full text
    This paper proposes a new, improved method for water flow metering. It applies to a transit time ultrasonic flow meter device. In principle, the flow of a given liquid in a pipe is obtained by measuring the transit times of an ultrasonic wave in the upstream and downstream directions. The difference between these times is, in theory, linearly proportional to the liquid flow velocity. However, the fainter the flow is, the smaller the transit time difference (TTD) is. This difference can be as low as a few picoseconds, which gives rise to many technical difficulties in measuring such a small time difference with a given accuracy. The proposed method relies on measuring the TTD indirectly by computing the phase difference between the steady-state parts of the received signals in the upstream and downstream directions and by using a least-square-sine-fitting technique. This reduces the effect of the jitter noise and the offset, which limit measurement precision at very low flow velocity. The obtained measurement results illustrate the robustness of the proposed method, as we measure the TTD at no-flow conditions, with a precision as low as 10 ps peak-to-peak and a TTD offset of zero, within a temperature range from room temperature to 80 °C. This allows us to reach a smaller minimum detectable flow when compared with previous techniques. The proposed method exhibits a better trade-off between measurement accuracy and system complexity. It can be completely integrated in an ASIC (application specific integrated circuit) or incorporated in a CPU- or micro-controller-based system
    corecore