63 research outputs found

    Phosphorylation of rat spermatidal protein TP2 by sperm-specific protein kinase A and modulation of its transport into the haploid nucleus

    Get PDF
    Transition protein 2 (TP2), which is expressed during stages 12-15 of mammalian spermiogenesis, has been shown to undergo phosphorylation immediately after its synthesis. We reported earlier that TP2 is phosphorylated in vitro at threonine 101 and serine 109 by the salt extract of sonication-resistant (elongating and elongated) spermatid nuclei and the protein kinase phosphorylating TP2 was identified to be protein kinase A (PKA). We now report that the cytosol from haploid spermatids but not from premeiotic germ cells is able to phosphorylate recombinant TP2 in vitro at threonine 101 and serine 109. The kinase present in the haploid spermatid cytosol that phosphorylates TP2 has been identified to be the sperm-specific isoform of protein kinase A (Cs-PKA). Reverse transcription-PCR analysis indicated that Cs-PKA was present in the haploid spermatids and absent from premeiotic germ cells. The rat Cs-PKA transcript was amplified and sequenced using the isoform-specific primers. The sequence of rat Cs-PKA at the N terminus differs from mouse and human by one amino acid. Western blot analysis using specific anti-Cα1 antibodies revealed that Cα1-PKA is absent in haploid spermatid cytosol. We have also established an in vitro nuclear transport assay for the haploid round spermatids. Using this assay, we have found that the cytoplasmic factors and ATP are absolutely essential for translocation of TP2 into the nucleus. Phosphorylation was found to positively modulate the NLS dependent import of TP2 into the nucleus

    DNase I site mapping and micrococcal nuclease digestion of pachytene chromatin reveal novel structural features

    Get PDF
    A comparison of the DNase I digestion products of the 32P-5'-end-labeled pachytene nucleosome core particles (containing histones H2A, TH2A, X2, H2B, TH2B, H3, and H4) and liver nucleosome core particles (containing somatic histones H2A, H2B, H3, and H4) revealed that the cleavage sites that are 30, 40, and 110 nucleotides away from the 5'-end are significantly more accessible in the pachytene core particles than in the liver core particles. These cleavage sites correspond to the region wherein H2B interacts with the nucleosome core DNA. These results, therefore, suggest that the histone-DNA interaction at these sites in the pachytene core particles is weaker, possibly because of the presence of the histone variant TH2B interacting at similar topological positions in the nucleosome core as that of its somatic counterpart H2B. Such a loosened structure may also be maintained even in the native pachytene chromatin since micrococcal nuclease digestion of pachytene nuclei resulted in a higher ratio of subnucleosomes (SN4 + SN7) to mononucleosomes than that observed in liver chromatin

    Identification of two novel zinc finger modules and nuclear localization signal in rat spermatidal protein TP2 by site-directed mutagenesis

    Get PDF
    Spermatidal protein TP2, which appears transiently during stages 12-16 of mammalian spermiogenesis, is a DNA condensing zinc metalloprotein with a preference to GC-rich DNA. We have carried out a detailed site-directed mutagenesis analysis of rat spermatidal protein TP2 to delineate the amino acid residues involved in coordination with two atoms of zinc. Two zinc fingers modules have been identified involving 4 histidine and 4 cysteine residues, respectively. The modular structure of the two zinc fingers identified in TP2 define a new class of zinc finger proteins that do not fall into any of the known classes of zinc fingers. Transfection experiments with COS-7 cells using wild type and the two zinc finger pocket mutants have shown that TP2 preferentially localizes to nucleolus. The nuclear localization signal in TP2 was identified to be 87GKVSKRKAV95 present in the C-terminal third of TP2 as a part of an extended NoLS sequence

    Identification of potential serum biomarkers of glioblastoma: serum osteopontin levels correlate with poor prognosis

    Get PDF
    Background: The aim of this study is to identify serum biomarkers with classification and prognosis utility for astrocytoma, in particular glioblastoma (GBM). Methods: Our previous glioma microarray database was mined to identify genes that encode secreted or membrane-localized proteins. Subsequent analysis was done using significant analysis of microarrays, followed by reverse transcription-quantitative PCR (RT-qPCR) and immunohistochemical validation in tumor tissues, ELISA and Western blot validation in sera, and correlation with survival of GBM patients. Results: Significant analysis of microarrays identified 31 upregulated and 3 downregulated genes specifically in GBMs. RT-qPCR validation on an independent set of samples confirmed the GBM-specific differential expression of several genes, including three upregulated (CALU, CXCL9, and TIMP1) and two downregulated (GPX3 and TIMP3) novel genes. With respect to osteopontin (OPN), we show the GBM-specific upregulation by RT-qPCR and immunohistochemical staining of tumor tissues. Elevated serum OPN levels in GBM patients were also shown by ELISA and Western blot. GBM patients with high serum OPN levels had poorer survival than those with low serum OPN levels (median survival 9 versus 22 months respectively; P = 0.0001). Further, we also show high serum TIMP1 levels in GBM patients compared with grade II/III patients by ELISA and downregulation of serum GPX3 and TIMP3 proteins in GBMs compared with normal control by Western blot analysis. Conclusions: Several novel potential serum biomarkers of GBM are identified and validated. High serum OPN level is found as a poor prognostic indicator in GBMs. Impact: Identified serum biomarkers may have potential utility in astrocytoma classification and GBM prognosis

    Corrigendum

    No full text

    Biochemical effects of the porphyrinogenic drug allylisopropylacetamide. A comparative study with phenobarbital

    Get PDF
    Successive administrations of allylisopropylacetamide, a potent porphyrinogenic drug, increase liver weight, microsomal protein and phospholipid contents. There is an increase in the rate of microsomal protein synthesis in vivo and in vitro. The drug decreases microsomal ribonuclease activity and increases NADPH–cytochrome c reductase activity. Phenobarbital, which has been reported to exhibit all these changes mentioned, is a weaker inducer of δ-aminolaevulinate synthetase and increases the rate of haem synthesis only after a considerable time-lag in fed female rats, when compared with the effects observed with allylisopropylacetamide. Again, phenobarbital does not share the property of allylisopropylacetamide in causing an initial decrease in cytochrome P-450 content. Haematin does not counteract most of the biochemical effects caused by allylisopropylacetamide, although it is quite effective in the case of phenobarbital. Haematin does not inhibit the uptake of [2-(14)C]allylisopropylacetamide by any of the liver subcellular fractions

    Immunochemical detection of Z-DNA in rat pachytene spermatocytes

    No full text
    Rat testicular nuclei have been probed for the presence of Z-DNA conformation by employing indirect immunofluorescence technique using anti-Z-DNA antibodies. Pachytene nuclei, in which meiotic recombination takes place, showed brighter fluorescence than the premeiotic and postmeiotic spermatogenic nuclei. Moreover, utilizing a novel chromatin immunoblotting tecnique, Z-DNA conformation was found to be enriched in the poly(ADP-ribosyl)ated chromatin domains of the pachytene nucleus

    Condensation of DNA and chromatin by an SPKK-containing octapeptide repeat motif present in the c-terminus of histone H1

    No full text
    Several DNA binding motifs have been described in the C-terminus of histone H1 (Churchill & Travers, 1991), of these the S/TPKK repeat (Suzuki, 1989) often occurs as a part of an octapeptide repeat of the type XTPKKXKK. We have studied in detail the DNA and chromatin condensing properties of a consensus octapeptide KSPKKAKK (8 mer) present in many histone H1 subtypes and its imperfect repeat ATPKKSTKKTPKKAKK (16 mer TPKK) as it occurs in the C-terminus of rat histone H1d. The 16 mer TPKK peptide containing two S/TPKK motifs was able to condense both rat oligonucleosomal (2-5 kbp) DNA and histone H1-depleted chromatin as revealed by circular dichroism spectroscopy. The 8 mer peptide, however, was unable to condense either the DNA or the histone H1-depleted chromatin. Both the 8 mer peptide and the 16 mer TPKK peptide displaced distamycin A from the drug-DNA complex, although with different efficiency, indicating that while these two peptides could bind DNA, only the 16 mer (TPKK) peptide could bring about condensation of DNA and histone H1-depleted chromatin. A mutant 16 mer (TAKK) peptide wherein two proline residues are replaced by alanine, was ineffective in bringing about condensation of both DNA and histone H1-depleted chromatin. These results suggest that the two β-turn structures present in the 16 mer (TPKK) peptide could be important in facilitating binding to different regions of duplex DNA thereby bringing about close packing and condensation. The condensation property of the 16 mer (TPKK) peptide was very similar to that of histone H1 in terms of (a) its preference for AT rich DNA, (b) cooperativity of condensation, and (c) salt dependence of condensation. The 16 mer (TPKK) peptide, but not the 8 mer peptide or the 16 mer (TAKK) peptide, could form complexes with a polynucleosomal 5S DNA core resulting in retarded mobility similar to the complexes formed with histone H1 on agarose gel electrophoresis
    • …
    corecore